

Prof. Dr. techn. G. Scheffknecht

Continuous tar monitoring via FID -

Actual status of the further development of an online tar measurement device

Andreas Gredinger

Gas Analysis Workshop, Hamburg 2014

Tar analyzer history

Measurement principle

Loading phase

ıtk

Measurement principle

Analyzing phase

- Total non-condensable hydrocarbons
- Total condensable hydrocarbons

Itk

Measurement principle

Analyzing phase

- Total non-condensable hydrocarbons
- Total condensable 0 hydrocarbons

0

Itk

Analyzer specifications

ıfk

- Measurement principle:
- Oven temperature:
- Tar filter temperature:
- Tar filter material:
- Effective measurement range:
- Measurement limit:
- Reproducibility:
- Time for sampling and analysis:
- Sample gas flow rate:
- Ambient temperature:
- Heating time:
- Sample gas pressure:

Differential measurement of sample gas with and without tars (tars = hydrocarbon condensate on filter!) 300°C Adjustable between 20 and 99°C Sintered bronze 3 zones up to $120g_{Carbon}/m_{stp}^3$ (0-12, 0-60, 0-120) Around 200mg_{Carbon} (Still to be validated!) < 0.5% of the measured value Minimum 50-60 seconds (per measurement) ~1l/min 0 to 50°C Minimum 60 minutes -10 to 50mbar

Calculation of tar concentration

Concentration_{tar} = Peakarea_{Sample Loop 2} · Calibration factor₂ - Peakarea_{Sample Loop 1} · Calibration factor₁

• Peakarea_{Sample Loop 1/2} = Accumulated FID Signal of respective peak area (integral)

C-concentration of calibration gas $\left(\frac{mg_{Carbon}}{m_{stp}^3}\right)$

• Calibration factor_{1/2} =

From theory:

- > The signal of an FID is almost directly proportional to the amount of organically bound carbon.
- Propane is commonly used as calibration gas for FIDs because of the linear detection of different concentrations.

Use of 5.12% propane in N_2 as reference gas.

Decreasing response factors for propane with decreasing concentrations \rightarrow Choice of measurement range!

Response factors for methane ~0.9 compared to propane

Substance	Gredinger	Dobson	Wandinger
Propane	1.00	1.00	1.00
Methane	~0.90	1.00	1.26
Butane		0.95	1.01
Benzene		0.97	1.14
Toluene		1.00	1.08
Xylene		0.93	1.08
Phenol	exp	pected to be <	0.8

Operation and control software

			Calibratian Dura			Colliburitor Can Departing		
Measurement range		Calibration Runs	Peak Filter	Peak total	Amount HC in cal	ibration das		
	Extended: 0	-120gC/m ³	1	278.31	281.71	E 10 vol		
	High: 0-6	SOgC/m ³	2	278.57	281.72	5.1Z Vol.		
	Tigit. 0-00ge/iii		3	279.17	283.52	Density HC of calibration gas		
	Low: 0-1	2gC/m ³	4	279.39	283.42	2.010 kg/r	n ³ 1	
D	etector Value		5	280.17	283.22	C-Content of calil	pration gas	
	0.00	auto zero	6			0.817 kgC	/kg ↑ 🗼	
	ready for me	asurement	7			C Concentration	of collibration gas	
Calibration RUN		8			das: 84079 mg/m ³			
			9			3	04070	
Runs:	5 1	•	10			Sample Time		
	Filter	total		1		t loading	t analyzing	
avarage FID value	279.12	282.72	Select	Clear	Clear	15	15 sec	
response mg/m3	301.229	297.395						
	Measure	run 18: Analy	e HC(total) re	maining	2 sers	connected 5588	2014-05-22 14-24-1	

High Low
High
Low
N
gC/m ³
136.8
306.9
-93.2

2nd gen. online tar measurement device

Results of calibration gas tests

Measurement Accuracy and Repeatability

Comparison with results from tar protocol

Ifk

Tar monitoring - Change in gasification temp.

Itk

Possible applications

- General (industrial) gasifier monitoring
- Surveillance / Monitoring of gas cleaning / gasifier downstream equipment
- Simplified detection of optimal gasifier / gas cleaning equipment operation point

Future experiments and analyzer validation

- Further tests with calibration gas for general analyzer validation
 o Influence of general analyzer settings to measurement signal
- Tests with single tar species (generated with own "tar generator"):
 - Identification of single response factors
 - o Identification of filter breakthrough at different concentrations
- Tests with hydrogen in sample gas to detect influence on analyzer signal
- Tests with steam in sample gas to detect influence on analyzer signal and filter behavior
- Long term tests at IFK pilot plant to see time of filter breakthrough
- Tests at IFK pilot plants to compare measurements with tar protocol and SPA at different gasification processes
- Tests at CIUDEN gasifier (Ponferrada/Spain) in September

Interested parties are always welcome to visit IFK during test time!

Contact person: Andreas Gredinger

Institute of Combustion and Power Plant Technology - IFK Department Decentralized Energy Conversion Universität Stuttgart Pfaffenwaldring 23 D-70569 Stuttgart

- Tel.: +49 711 685 65585
- Fax: +49 711 685 63491
- Mail: andreas.gredinger@ifk.uni-stuttgart.de http://www.ifk.uni-stuttgart.de

Analyzer manufacturer: www.ratfisch.de

