

Prof. Dr. techn. G. Scheffknecht

wet-chemical measurement of H₂S in wet, tary gases

Daniel Schweitzer

Gas Analysis Workshop 2016 Amsterdam, 10. Juni 2016

Motivation

ıfk

- Gasification of S-containing biomasses can cause high concentrations of H₂S in produced gases.
- H₂S can damage downstream product gas utilization devices (e.g. engines, catalysts ...)
- → detailed knowledge about H_2S concentration necessary
- Use of gas-analyzers (GC, FTIR) often not suitable due to
 - high equipment and maintenance costs
 - special personal and knowledge required
- \rightarrow Wet-chemical methods suitable due to
 - low costs
 - short preparation and set-up time
 - no special equipment and personal necessary

wet chemical H₂S measurment methods

- Several standardized methods for measuring H₂S in product gases exist:
- Absorption of H₂S in CdSO4 with iodometric titration(EPA Method 11)
- Absorption of H₂S in Zn(CH₃COO)₂ with iodometric titration(EPA Method 16a)
- Absorption of H₂S in Zn(CH₃COO)₂ with subsequent iodometric titration (DIN 51855-4)
- ...

DIN 51855-4 was selected due to

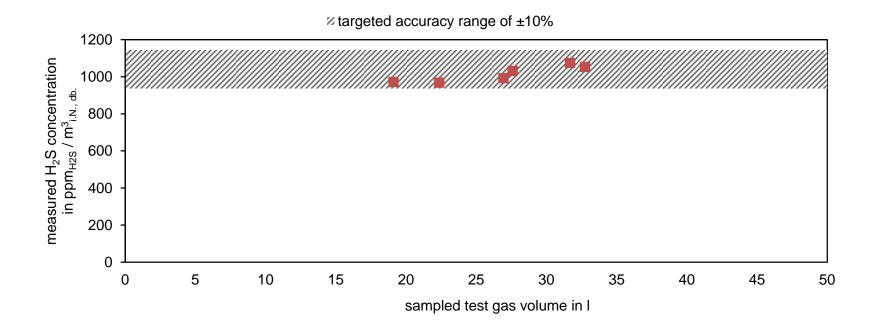
- no toxic chemicals necessary
- sampling and titration can be done separately \rightarrow high sampling frequency

Basic measurement method:

- H₂S: Reaction with Zinc Acetate_(aq) und formation of zinc sulphide_(s)
- Zinc sulphide precipitate filtered from sample solution and subsequent the amount of zinc sulphide is determined by lodometric titration
- Method is standardised & described in DIN 51855-4

Problem:

- tar condensation in the Zinc Acetate solution disturbs the Titration
- → Use of acidulated Isopropanol for tar removal*


tar removal solution	absorption solution
1/2 Isopropanol and	Zink acetate _(aq)
½ of 30% H₂SO₄	

* J. Zeisler, M. Kleinhappl: Reliable sampling of impurities in product gas and syngas, in ICPS2010

H₂S measurement - Accuracy

- Accuracy: test measurements with a 1040 ppmv_{H2S} test gas have show a good accuracy
- addition of gaseous tar species in test gas showed no change in H₂S concentration

Conclusion

- + H₂S measurement in wet, tary gases is possible
- + test measurements showed good accuracy
- + tests at a lab gasifier have shown good results
- Prior to the titration the H_2S concentration has to be estimated

• a more detailed documentation about pollutant measurement techniques in product gases will be published in near future

The work was carried out within the DEBUGGER (Demonstration of efficient Biomass Use for Generation of Green Energy and Recovery of Nutrients) project.

The authors gratefully acknowledge the financial support from EIT and KIC InnoEnergy.

http://www.kic-innoenergy.com/

Contact: Daniel Schweitzer Institute of Combustion and Power Plant Technology University of Stuttgart daniel.schweitzer@ifk.uni-stuttgart.de http://www.ifk.uni-stuttgart.de

