

Water measurement; an introduction

Markus Kleinhappl Bioenergy2020+

→ http://www.gas-analysis-webinars.org/

Workshop Berlin 3. and 4. th April Berlin

Content

- Water content (Gas \rightarrow sampling liquid)
- Water quantification methods
- BE approach for 'standard' applications
- Discussion

Saturation with water =humidity at ambient pressure (compared to other solvents)

Consider:

Sample gas with dewing point of 50°C is introducing more water, than the loss of solvent of 2-Propanol is:

→ Sample 1 m³ gas in
100 ml liquid (initial)
→ Status at the end of sampling:
Solvent: -25 g (~30 ml)
Propanol
Water: + 100g=100 ml

Final water content (mixed): 100/(100+100-30)>58%vol!

Effects all over the sampling line

slide 4

Negative effects

Water and steam is very important during gasification, char gasification, tar reforming, but:

- **Dilution** of solvents
- Phase separation of inpolar solvents
- Increased slip of unpolar fractions during sampling
- Layering on polar SPA-substrates (reduced capture, time dependent result)
- Ice formation, sludge, rocks in liquid samplers
- **Baseline instabilities** (steam-breathing of column, FID-blowers)
- Discrimination during evaporation in GC injectors, early peaks blow off
- (compared low interaction HPLC-Systems: AcN:MeOH eluent)
- **Discrimination and delay in gravimetric** procedure, hygroscopic phenolics

Lab crew can do this:

- Do not sampling,
- Apply mixtures of solvents
- Take a laggard /ger: Schlepper/ like THF into liquid for gravimetric determination
- Separate majority of humidity during sampling with a pre-condensor
- (but treat then also this condensate and the glass equipment there)
- Separate the water from the sample
- Azeotropic distillation, like EN1948-1 (xylene)
- Diluter against water condensation (only for SPA-cartridges), like VDI 3872.
- Stop early enough the sampling at low water content, when You want to sample Benzene,...
- Dry the liquid with Na₂SO₄ x anhydro
- Extract the liquid sample with DCM or Hexane.

Degree of difficulties; scale

Temperature a sampling poin	at Content of nt DUST	Content of WATER	Content of organics ('tars')	Compounds organic	Compounds to in-organic	tal
$1,000 \rightarrow 4$ $800 \rightarrow 4$	>10,000→ 5-	>80°C → 5 <80°C → 3	>10,000 → 5 <10,000 → 3	Manual : Multiply x 1	Manual : Multiply x 1	
$\begin{array}{c c} & 600 \rightarrow 4 \\ \hline & 400 \rightarrow 3 \end{array}$	<1000 → 3- <100 → 2-	<60 → 2<<40 → 1<	<1,000 → 2	online : Multiply x 10	online : Multiply x 5	
200 → 2 ambient °C	\rightarrow 1 \rightarrow 1	<10<0°C dewpoint local pressur	<10 <1 re mg/m³ dewing	Pressure:*) Multiply x p[bar]/ Pressure:*) factor for	Pressure :: 10 Multiply x p/10	tion
TF	+ DF	+ WF	+ OF =	-	DEGF	REE
2+ 4+	2+ 5+	1+ 3+	2 = 2 =	normal = e.g. high dust fluidi	application 7 (=med sed bed sampling 14 hig	lium) gh

Example of water effects two chromatograms with/without water

Water quantification: toolboxes

Water quantification

Calibration data WATER in 2-Propanol

Water quantification via 'tar-solvent' from sampling MeOH

Calibration data WATER in Methanol

 $y = 13709x^2 - 19760x + 7063,8$ $R^2 = 0,9996$

discussion

Protocol of main facts:

- 1.
- 2.
- 3.4.
- 5.

The gas/liquid ratio

bioenergy2020+

