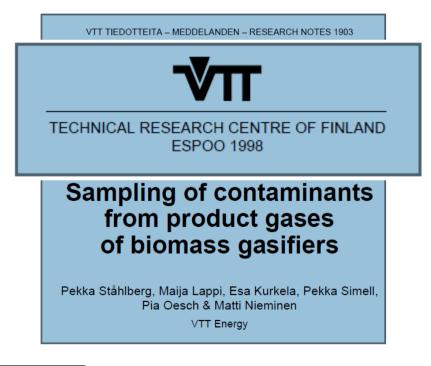


Method catalogue

Notes, Markus Kleinhappl

Bioenergy2020+

Graz, Austria


Content

- Model of former method catalogues
- Quality definitions
- Minimum requirements
- Qualification of each method

Benchmark: VTT method deskription

- 1st complete catalogue of different sampling and detections fundamentals (vtt, 1998)
- Most but not all analysis and quantification methods documented

Pretace	4
1. Introduction	7
1.1 Biomass gasification effluents	7
1.2 Particulates	9
1.3 Tars	10
1.4 Nitrogen compounds	13
1.5 Other effluents (S, HCl, Metals)	13
2. Sampling systems	15
2.1 Introduction	15
2.2 Isokinetic sampling trains	15
2.3 Non-isokinetic sampling trains	18
2.4 Separate sampling of particulates	20
2.5 Sampling with a liquid-quenched probe	21
2.6 Sampling using gas dilution	23
3. Sampling of tars	25
3.1 Impinger systems	25
3.2 Sampling of polyaromatic compounds	27
3.3 Other systems	29
4. Sampling of inorganic compounds	31
4.1 Sampling of H ₂ S and other sulphur gases	31
4.2 Sampling of NH ₃ and HCN	34
4.3 Sampling of HC1	36
5. Storage of samples	38
6. Conclusions and suggestions	39
References	42
Appendix A: Gas samples, sampling. Sampling lines	
Appendix B: Tar samples, sampling	
Appendix C: Heavy tar samples, sampling	
Appendix D: Tar samples, analysis	

Quality= Fulfilment of defined targets in defined and repeatable measurable parameters.

About Detection and Quantification:

Nachweisgrenze / Detection limit / il limite di attestazione

LOD is the limit of detection from which the measured parameter is detected with a likelyhood of 50%.

The result is YES or NO.

Probable values below are called in-detectable or not to be detected with the present procedure/and/or detector.

Calculation from statistics: LOD= \overline{X} +n* σ

......with mean \overline{X} of blank value and IT's standard deviation of $\pm \sigma$.

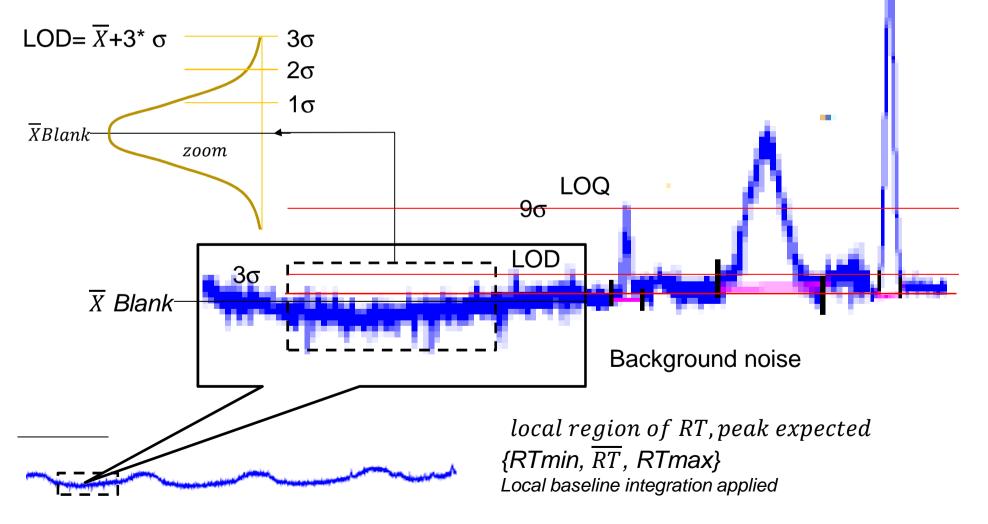
e.g. an analysis delivers the **detection**, if it exceeds 3-times the σ .

Erfassungsgrenze / Detection limit / il livello di registrazione

DL is the concentration level, from which the desidered substance is detected within an confidence range better than 95 or 99% (confidence intervall in normal distribution).

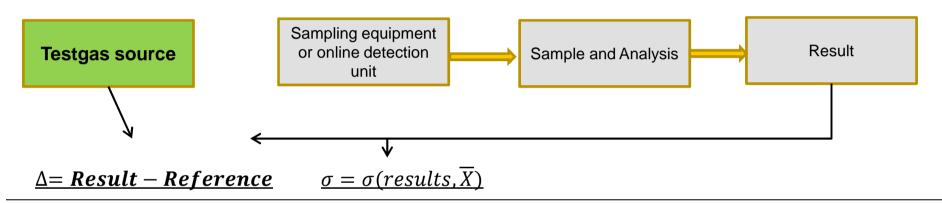
Calculation from statistics: DL~2*LOD

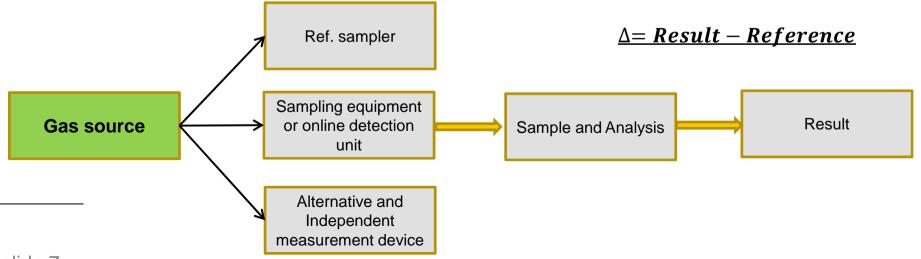
e.g. an analysis delivers the detection, if it exceeds 2-times the LOD.


Bestimmungsgrenze / Limit of Quantification / il livello di quantificazione Is the minimal limit from which a result can be reported with defined statistic information like RSD, or stat. deviation. The statistic computation is the same like LOD, but higher increment of sb:

LOQ= \overline{X} +n^{*} σ with mean of blank value (\overline{X}) and IT's standard deviation of $\pm \sigma$. e.g. an analysis delivers the **quantification**, if it exceeds 9-times the $\pm \sigma$.

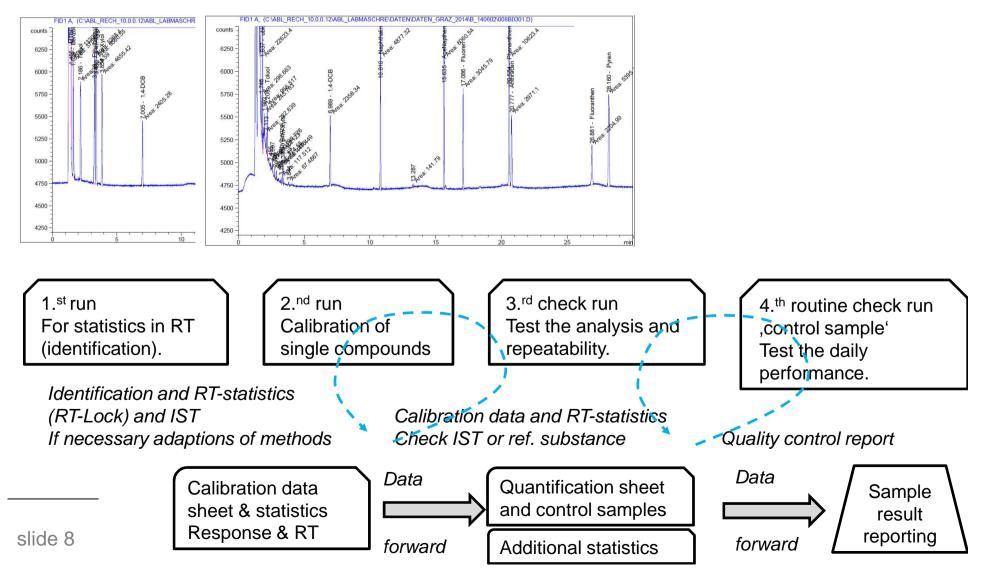
slide LOQ ~3*LOD


Signal shown: e.g. with peak height (for easier visualisation): real with ref.-peak an integration from different dilutions, sufficient linearity of the detector necessary.



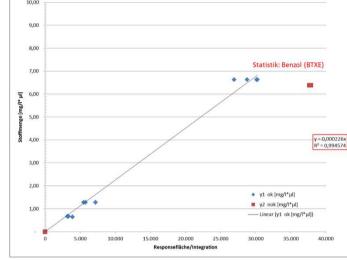
Quality measures 1. reference measurements for sampling

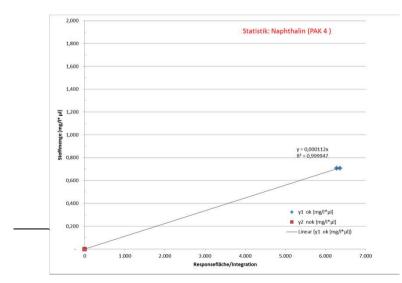
<u>Test procedure 1</u>: a reference gas (cylinder) or a test gas generator is available.

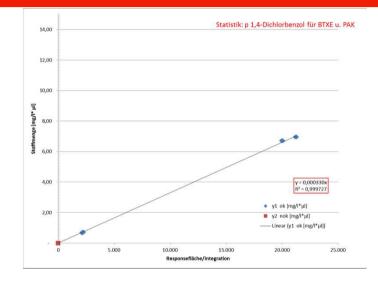

Test procedure 2: a reference sampler or / and an alternative device is synchronous available.

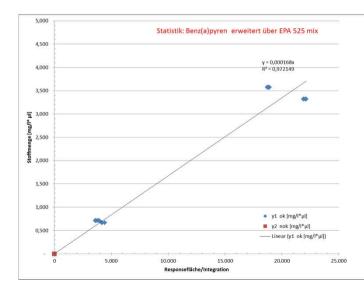
Quality measures

2. reprocessive quality control in Analysis (e.g.GC)


slid


Quality measures 2. reprocessive quality control in Analysis (e.g.GC)


	Zusammenfassun	g de	r Kalibrierdate	<u>n</u>								Kalibration		
	Name		Reihenfolge	PAK 4 ST	PAK 4-9 ST	EPA 525 mixA	EPA 525 sonst.	RT:	kurz	Streu RT	Streu RT	bis 10	RSD	
								[min]		[min]	[%]	[mg/l*µl] pro count	[-]	
	Naphthalin	х	1	Х				10,815	PAK1	0,007	0,064	0,0001120	0,999947	
	AceNaphtylen													
	AceNapthen	х	2		Х	Х		15,325	PAK2	0,249	1,624	0,0001040	0,72807	
	Fluoren	х	3	Х		Х		17,089	PAK3	0,004	0,025	0,0001590	0,889884	
	Phenanthren	х	4	Х	Х	Х		20,587	PAK4	0,009	0,044	0,0001100	0,910404	
	Anthracen	х	5	Х		Х		20,779	PAK5	0,006	0,029	0,0001630	0,956516	
	Fluoranthen	х	6		Х			26,889	PAK6	0,018	0,066	0,0006200	0,994412	
	Pyren	х	7		Х	Х		28,170	PAK7	0,012	0,044	0,0001150	0,806553	
	Chrysen	х	8		Х	Х		36,758	PAK8	0,016	0,045	0,0001020		
	Benz(a)anthracen	_	9		Х	Х		37,029	PAK9	0,016	0,044	0,0001410		
	Benz(b)fluoranth		10			Х		44,509	PAK10	0,015	0,033	0,0001690	0,984626	
	Benz(k)fluoranthe	e x	11			Х		44,688	PAK11	0,015	0,033	0,0001670	0,986008	
	Benz(a)pyren	х	12			Х		46,545	PAK12	0,014	0,031	0,0001680	0,972149	
	Indeno(1,2,3-cd)p	ух	13			Х		,	PAK13	0,017	0,031	0,0001670	0,978407	
	Dibenzo(a,h)anth	_	14			Х		,	PAK14	0,016	0,030	0,0001630	, , , , , , , , , , , , , , , , , , ,	
	Benzo(ghi)peryle	nx	15			Х		54,961	PAK15	0,022	0,041	0,0001620	0,986175	
1. st run For statistic (identificatio				run bratio le con		ds	Te	rd ch est th peat	e ar	alysis	and	, či		ne check ru sample' daily
,	(D T			- i				-					erforma	-
Υ.	on and RT-s	tat	tistics	i v			/	-		i i				•
Identificatio		tat	tistics		Ci	alibratio	on data	and	I RT-	statis	tics			
Identificatio (RT-Lock) a				ds		-	on data				tics	pe	erforma	•
Identificatio (RT-Lock) a	and IST ry adaptions Calib	s o rat		a		neck IS	T or re	<i>ef. su</i> antif	bsta icati		eet	pe	erforma	ance.



Quality measures 2. reprocessive quality control in Analysis

Application of toolboxes

		sampling analysis	online sampling & quasi cont. sampling	Real time sample extraction and/or		
				detection/quantification		
	Accumulation on solid phase	Accumulation in liquids (cooled)	Dosage, fractioning chromatographic separation in retention	Dosage or dilution, selective detection & quantification		
Necessai accessor		Pre-separation of solids/aerosols 'dust-extraction'	Diff. pre- separations of solids/aerosols 'dust-extraction' & dehumidification	additional Measures against scaling, layering, deposition Online calibration		
Benefit	Simple equipment Sample storable & transport	Sample storable transport (heavy eqipment)	& Quasi continous	All in real time		
COSTS	Very low	medium	high	Very high		

Method catalogue

(I cadastre; II catalogue; III evaluation checklist)

1. Method description

- Including the sampling
- Equipment
- Procedure
- Not to do's, safety measures

2. **Method is recommended** for the following

- Gas families*)
- Tar species
- Concentration range

*) matrices and accompanied impurities

3. Method validation

- On application
- Gas family
- Procedure
- Reference-method used,.....
- State of the art ref. methods in industry, petro chemistry,...
- Statistic results from RR-class 2 and 3

4. Method development or rejection

Targets of (2)+(3) evaluated:

- Which is recommended or not
- Which is old and now implemented in newer techniques

RR-class 2: based on sample exchange, RR-class 3: based on synchronous sampling, accompanied analysis.

Targets for measurements in gases

Status & degree of plant evolution	Lab test for effect experiments	Lab plant with real feedstock	Pilot plant	Full commercial plant		
Purpose	Study in lab (e.g. reforming reaction)	Plant operation a. component testing	Plant operation a. plant testing &	Plant operation & further optimisation trouble shouting		
Substances #	1 and simple	1-3, Matrix defined	optimisation 1-5, Matrix defined	OR authorities		
Matrix		1/ hour, or online		3 most important, Matrix defined		
Frequency of measurement	1/ minute, or online	17 nour, or online	1/ hour, or 1/ shift	1/ hour, 1/ shift, 1/month 1/year		
Type of result	Manny points, continuous curve	Manny points, continuous curve	Sufficient stable points,	Result protocol		
		continuous curve	average/shift	Plant control		
Labour expectations	familiar with all ava equipment Pra Practical expert kno	Expert from lab. available Practical expert	External expert contacted	a) automated: continuouslyb) Periodically from external experts		
Expert knowledge		knowledge	Practical expert knowledge			
Automation	knowledge	recommended Sample switching	recommended	Expert from service & maintenance, calibration, quality control.		
	Sample switching	1 0	Sample switching	Automated = online		
slide 13	Control, Diff. software applications	Control, Diff. software applications	Control, via full plant control or	Quality procedures		

Degree of difficulties; scale

<i>Temperature at sampling point</i>	Content of DUST	Content of WATER	Content of organics ('tars')	Compounds organic	Compounds in-organic	total
$1,000 \rightarrow 4$ $800 \rightarrow 4$ $600 \rightarrow 4$	>10,000 \rightarrow 5 	→ $>80^{\circ}C \rightarrow 5$ → $<80^{\circ}C \rightarrow 3$ → $<60 \rightarrow 2$	>10,000→ 5 <10,000→ 3 <1,000→ 2	Manual : Multiply x 1	Manual : Multiply x 1	
$400 \rightarrow 3$ $200 \rightarrow 2$ ambient °C	- <100 → 2 - <10 → 1 - <1 mg/m3 - 0	<40 →1 <10 <0°C dewpoint local pressur	<100 →1 <10 <10 <1 re mg/m³ dewing	online : Multiply x 10	online : Multiply x 5	
TF +	- DF	+ WF	+ OF =			DEGREE
2+ 4+	2+ 5+	1+ 3+	2 = 2 =	e.g. high dust fluic	l application 7 lised bed sampling	(=medium) g 14 high

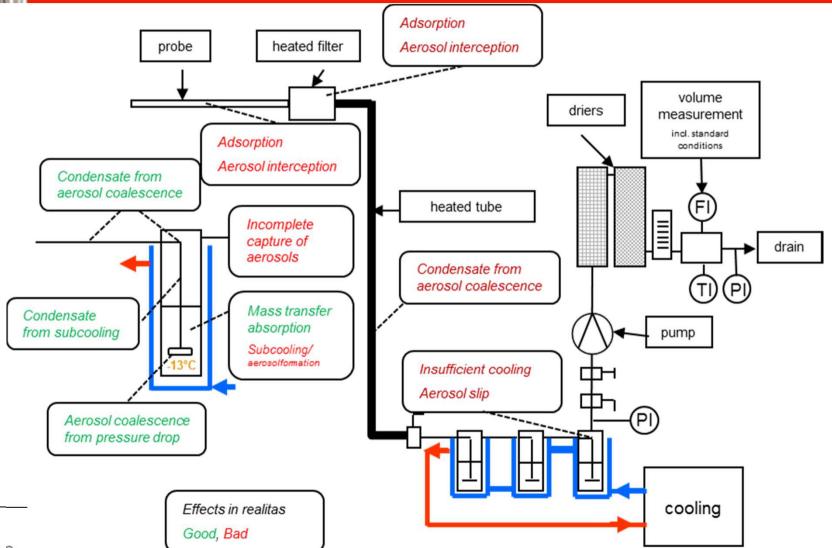
Sampling of Benzene becomes more important

Typical raw gas: 500-10.000 mg Benzene/m³ Typical cleangas for gas engines (±turbo charger): 250-5.000 mg/m³

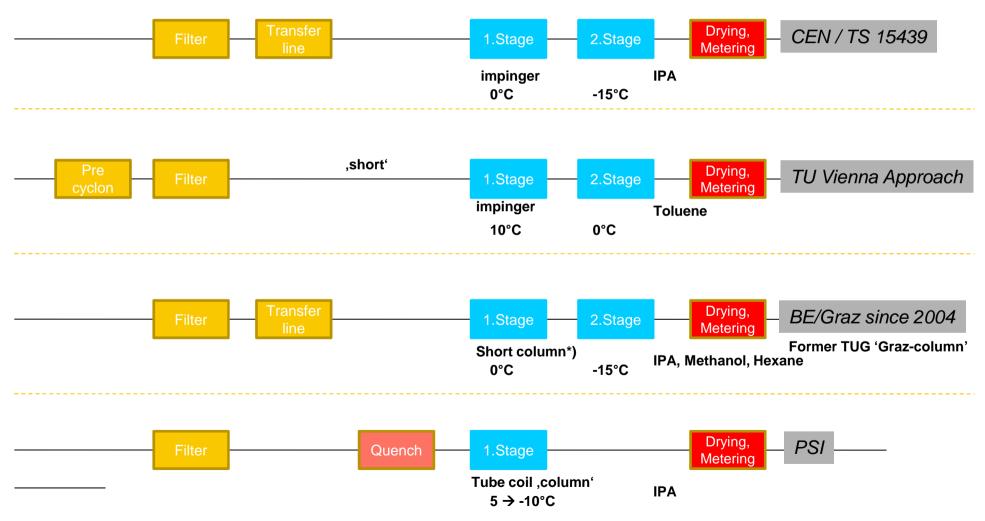
Residual concentrations in flue gas: 2-10% slip stream from product-fuel-gas 1-20% residues from break down of higher polyaromatics, additional from decomposed/burned lubricant.

Concentrations to be detected: 1-10 mg/m³

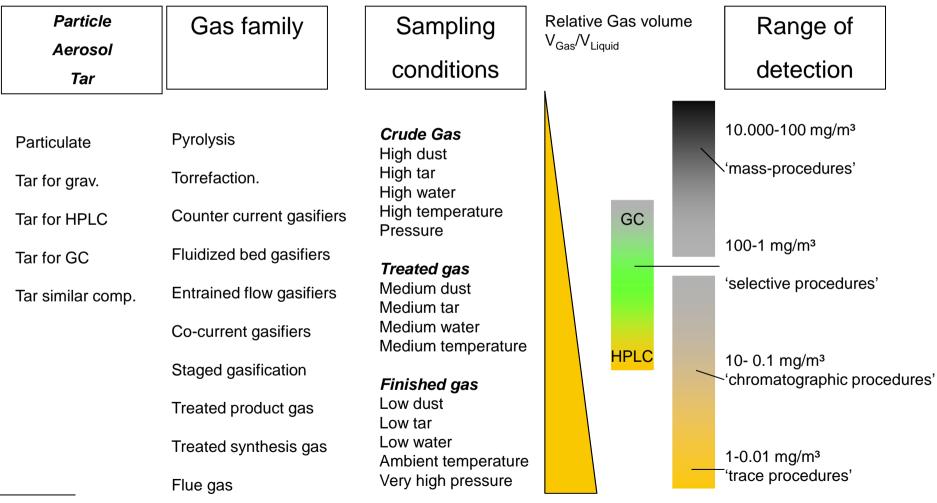
Sampling stream is hot, contains oxygen and is very humid.


Further regulation via *TA-Luft* is expected (<5 mg/m³) beside limits of organic matter (<10 or 50 mg/m³).

Currently formaldehyde FA is not regulated, compared to NG-gas engines.

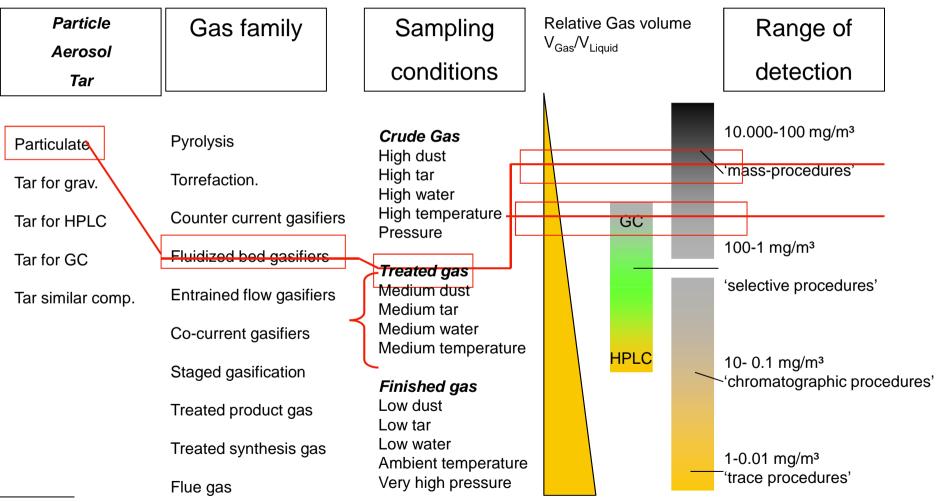

Effects all over the sampling line

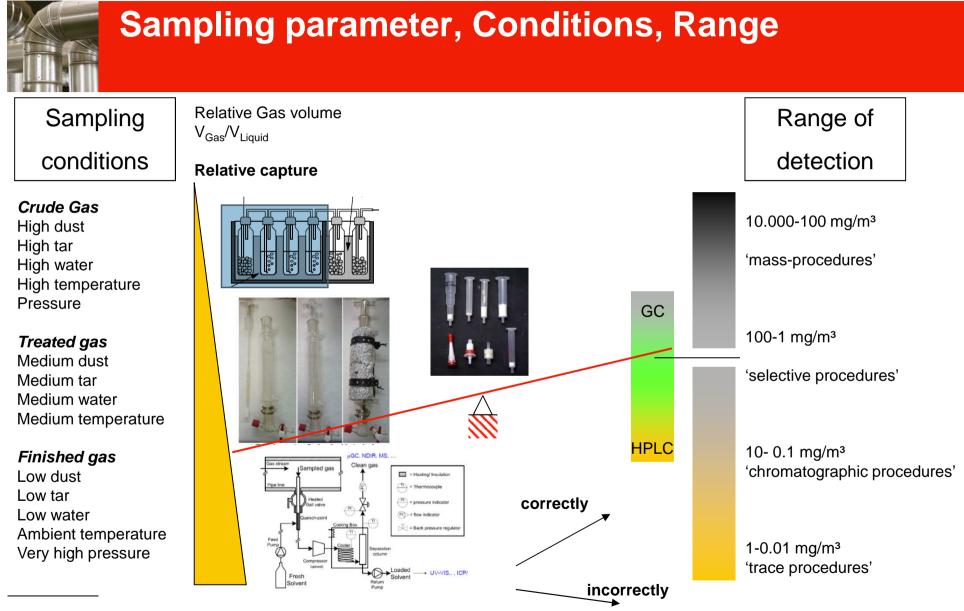
Suitable Concepts 'derivatives of CEN / TS 15439



slide 17 15/07/2014Prep. WS. 2013

Sampling parameter, Conditions, Range




Interface connector: sampling-analysis combination

Sampling parameter, Conditions, Range

In General: Sampling must be more complete than the Analysis can see.