

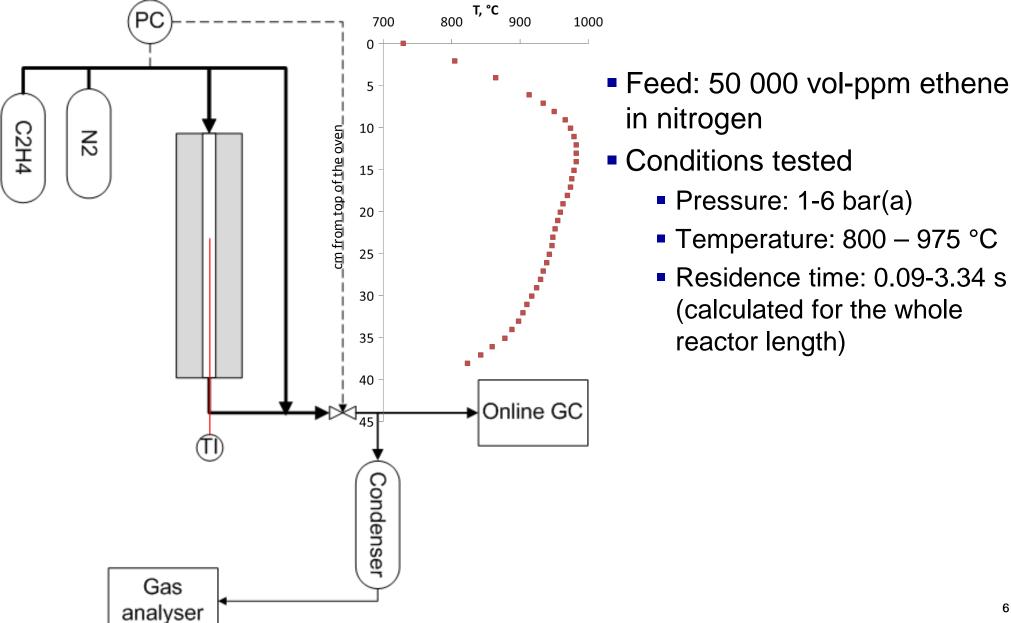
Supplementary tools for gasification gas analysis

Chemical Analysis in Bioenergy Conversion Processes, Hamburg 26th June, 2014 Matti Reinikainen, Noora Kaisalo, Sanna Tuomi, Pekka Simell VTT Technical Research Centre of Finland

Contents

- Tar generation by ethene pyrolysis
 - Laboratory set-up
 - Larger scale set-up
- Dilution sampling
- Other tools for gasification gas analysis in use at VTT

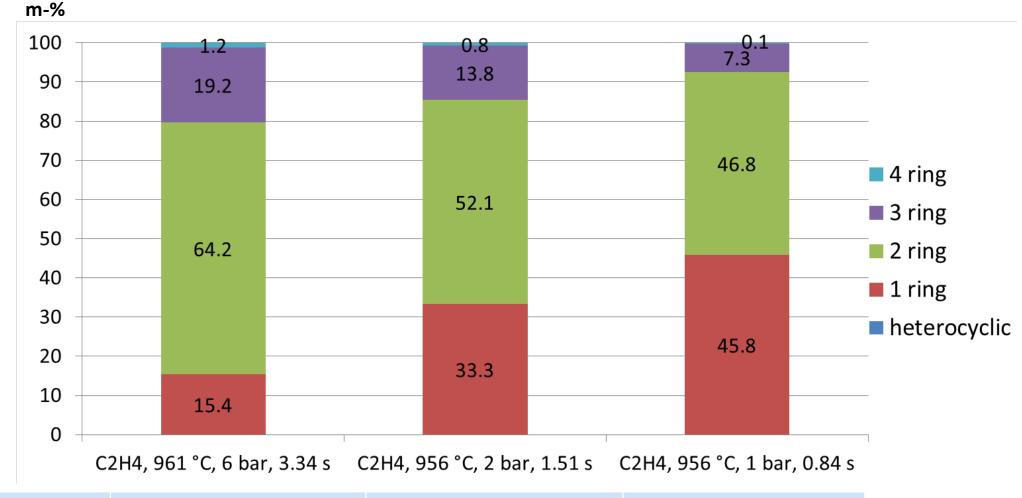
Tar generation by ethene pyrolysis


Background

- The objective was to generate a complex tar mixture that could be used for gas cleaning studies in lab and bench-scale.
- The concept of ethene pyrolysis in tar generation was first tested in lab-scale in varying conditions.
- The next step was to combine the production of the main gasification gas compounds and tar generation. This was carried out in HOTPURI reactor by steam reforming/partial oxidation of natural gas and simultaneous ethene pyrolysis. Natural gas, ethene, steam and oxygen were used as feed gases. The produced gas contains the main gasification gas compounds, a mixture of tars resembling real biomass gasification-based tar and also soot.
- HOTPURI reactor has been used in 2013/2014 to produce realistic gasification gas to a bench-scale hot gas filter test rig.
 - More economical solution compared to the use of cylinder gases in benchscale testing

Ethene pyrolysis experiments in lab-scale

Laboratory set-up and conditions


Example of most abundant tar compounds C₂H₄, 961 °C, 6 bar, 3.34 s

pA –	l e e	ę	e.	æ	a la	ly en	e		e e	4	e e	Aromatic compound	Amount, ppm
-	Benzene Toluene	Styrene	Inde	<u>त्र वर्षसः</u> 55 <u>ित्र न</u> लेववलिप्रियनिव		19.747 - Biphenyl	phtyle	24.691 - Fluorene	Accession Phenanthrene		-Pyrene	Benzene	2362
	2.586 - 3.852 -	6.381	0.567	Thap		747 - thylna	Acena	- Flu	Phen		35.424	Naphthalene	535
17 -	3 6	۴ ا	Ť	4.55 ft.		19.	337	24.691	2000		ie ie	Styrene	129
-				10.44	0.4	1 1	1	Ĩ	8800			Acenaphthylene	91
		æ				21.007			30	- 06		Indene	60
-		enzen							00	. 73.		Toluene	42
16-		6.031 - Ethynylbenzene										Phenantrene+Anthracene	29
-		品			ene					e		Biphenyl	19
		6.03			phthal					anthre	1	Ethynylbenzene	18
15					- 18.020 - 17.560 - 2-Methylnaphthalene		t - Acenaphthene			ne 31.756 - 4H-Cyclopenta(deî)Phenanthrene		and smaller amount of many other compo	
13- 12-	2.606-2.875	ooso- rEtaylaqqzene	218 124-Methylstyrene 908	506 48	1H-Indole	& Ethyingphthglene	22.394	ිදුරු.270 - 2-Methyl-1-Naphthol <u>5.237 25 දි</u> 7125,654 431 - 26.170	œ	thale	34.899	40.126 40.126 40.126 40.126 40.126 40.958 - Benzo(a)pyrene	
- 		5			1848 1980 15	20	Stern from	52 24.584.27 25.237.21 5 25.431 26	5 <u>5773</u> 97,4936	30	35	40 45 mi	7

Tar composition from ethene pyrolysis

Benzene mg/m3	8236	4194	1510
Total tar mg/m3	5713	3126	828

Examples of the formation of light hydrocarbons

	C ₂ H ₄ , 961 °C, 6 bar, 3.34 s	C ₂ H ₄ , 956 °C, 2 bar, 1.51 s	C ₂ H ₄ , 956 °C, 1 bar, 0.84 s
H2, vol-%	2.9	1.4	0.7
CH4, ppm	9769	2449	838
Ethene, ppm	10590	27122	36192
Acetylene, ppm	1530	6877	5554
С3, ррт	77	151	145
C4, ppm	118	411	443
C5, ppm	84	377	329
C6, ppm	1	6	6

Ethene conversion remarkable only above 950°C

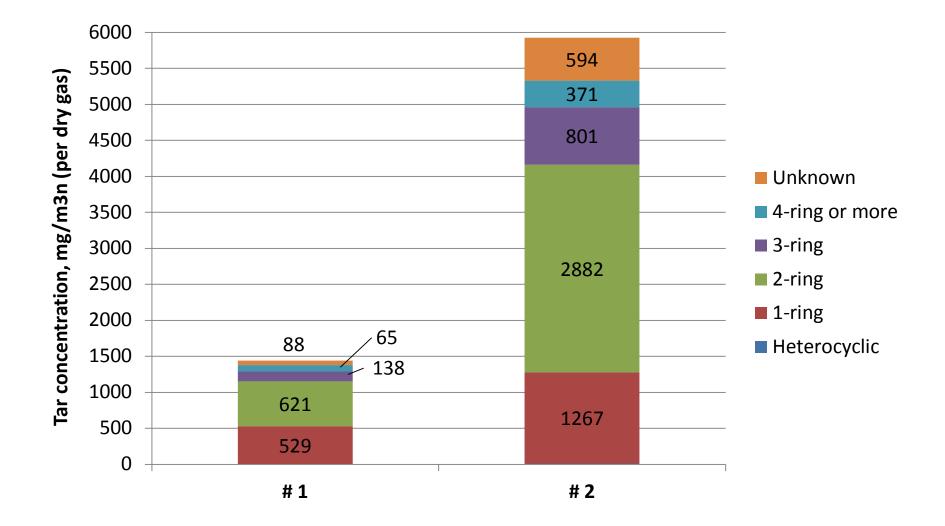
- At 905 °C the conversion was 1.2% (1 bar, 0.6 s)
- At 951 °C the conversion was 16.1% (1 bar, 0.6 s)

Generation of realistic tar-laden gasification gas in the 'HOTPURI'-reactor

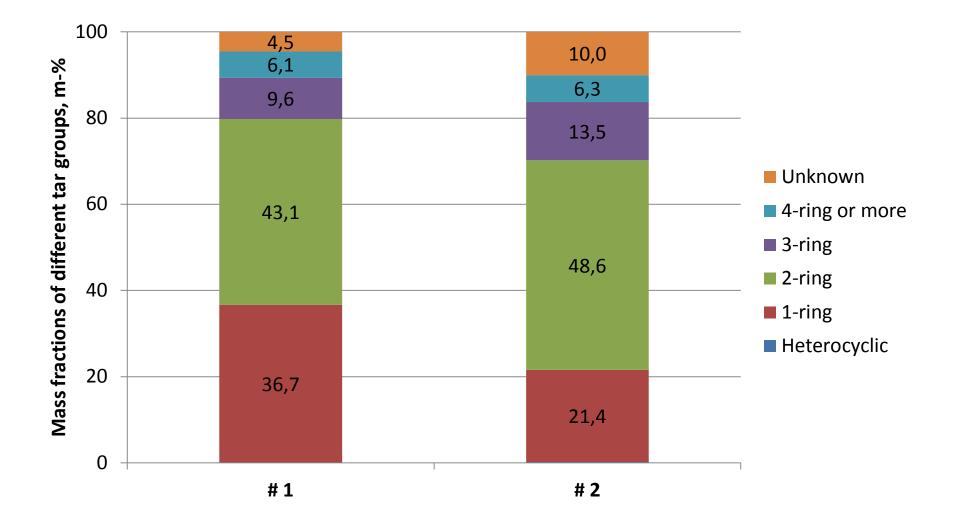
Realistic tar-laden gasification gas in HOTPURI reactor

- Operation principle
 - Simultaneous production of main gasification gas components and tars from natural gas, ethene, oxygen and steam
 - Steam reforming/partial oxidation of natural gas and ethene pyrolysis
- HOTPURI reactor
 - Max. pressure 10 bar(a) and temperature 1200 °C
 - Electrically heated
 - Feed gases: natural gas, oxygen, steam and ethene
 - Gas composition measured after the reactor:
 - 1. Continuous gas analyzer for measuring CO, CO2, H2, CH4
 - 2. Gas bag samples: analyzed with GC for the main gasification gas components and C2-C5 hydrocarbons
 - 3. Tar sampling according to the Tar Protocol as well as
 - 4. on-line tar measurement (dilution sampling)

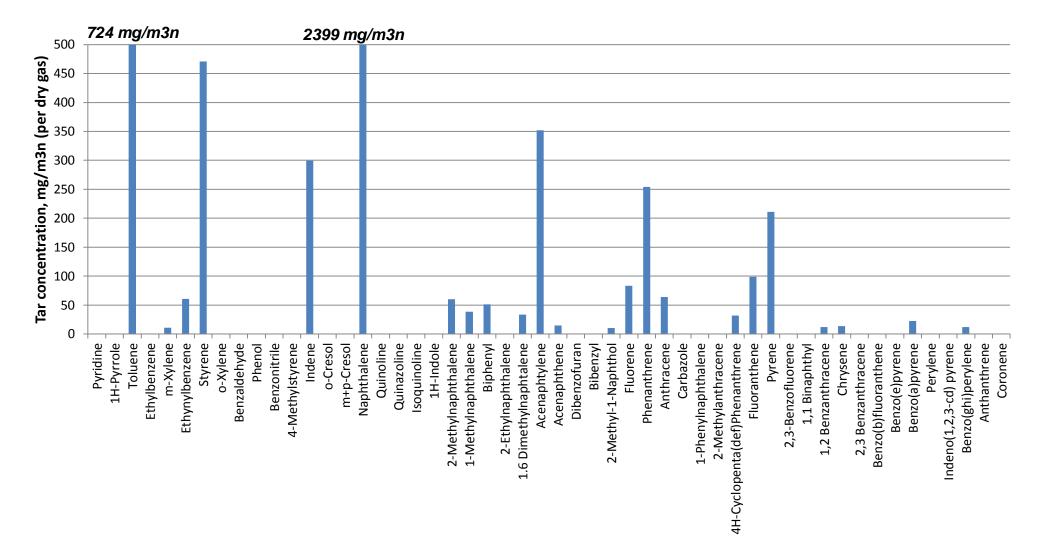
HOTPURI-reactor


Examples of gas and tar composition

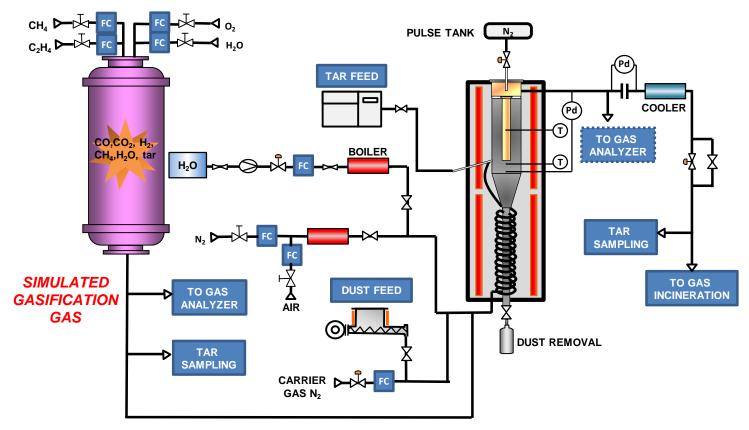
- The produced gas contained in excess of methane as the reactions conditions and feed gas ratios were not tuned for efficient conversion of natural gas. The tar yield was more important for our purposes.
- In addition to the main gas compounds, benzene and tars, also soot was formed.


TEST	# 1	# 2
Max temp in reactor, °C (appr.)	960	1100
Pressure	atmospheric	atmospheric
Residence time, s	> 3	> 4
FEED GAS COMP.	m-%	m-%
CH4	28,9	24,5
C2H4	10,4	21,1
O2	22,7	18,1
H2O	38,0	36,4
PRODUCT GAS COMP.	vol-%	vol-%
(dry basis)	VUI-70	VUI-70
СО	13,9	18,9
CO2	12,7	8,6
H2	30,8	44,0
CH4	36,7	24,6
C2H2	0,1	0,1
C2H4	5,4	3,6
C2H6	0,29	0,19
C3-C5Hx	0,09	0,03
H2O, vol-%	43,0	31,1
Total tar, g/m3n (per dry gas)	1,4	<i>5,9</i>
Benzene, g/m3n (per dry gas)	3,7	15,0 ₁₃

Examples of tar (excl. benzene) composition (1)


Examples of tar composition (2)

Examples of tar composition (3) - Tar compounds in test # 2



Experiences and remarks on tar generation by the second se

- Efficient conversion of ethene to tars requires high temperatures, preferably temperatures above 950 °C.
- Increase in temperature, pressure and residence time increases the tar yield.
- Soot is formed as a side product in ethene pyrolysis. Soot and heavy tar compounds cause fouling and plugging of the system and analysis lines.
- Tar production by ethene pyrolysis is sensitive to changes in the reaction conditions and therefore stable conditions must be maintained in the reactor to ensure steady tar levels over time. However, this can be done. Furthermore, tar concentration should preferably be monitored by online or at least semicontinuous methods.
- Gas and tar composition can be adjusted by changing the reaction conditions and feed gas ratios. However, it may be quite challenging e.g. to obtain a similar gas composition at different pressure levels.

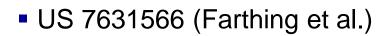
Pressurised hot gas filtration test rig ALMA

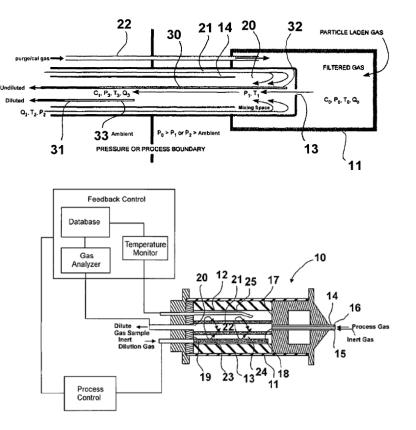
- Simulated gasification gas including soot and tars is fed to a filter unit.
- Pressures up to 5 bar(g), filtration temperatures up to 850 °C

Dilution sampling

Х.

Dilution sampling

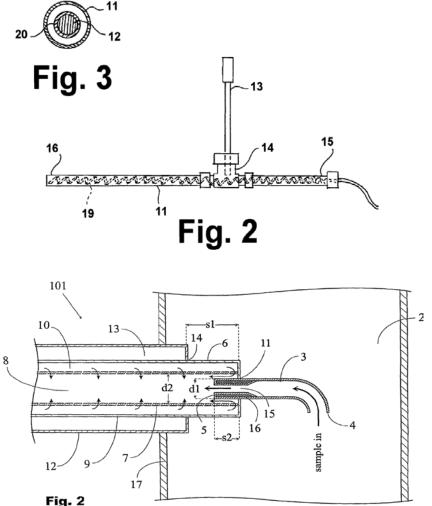

- Avoid condensation and change in gas composition during sampling
- Makes it possible to use a wide range of detectors also online
- Can be used in very high temperature and dirty environments for on-line monitoring of tars, alkali metals, halogen compounds, ammonia, sulphur, heavy metals and particles
- In many applications on-line dilution sampling can pioneering technique, for instance:
 - Diluted sampling probes are not available commercially
 - Reliable on-line tar measurements are not available on the market
 - On-line alkali measurements are not available
 - Possibility to build up a simultaneous multi-analysis systems for difficult gas streams
- It is very important that the sample is cooled and "extinguished" as fast as
 possible after taking from the process. The molecules and particles of a sample
 le steel pipe tend to change as the temperature drops and the gas is allowed to
 come into free contact with the gradually cooling walls of the pipe.



Dilution sampling probes

Several designs found in literature, for instance:

• US 7 712 834 (Felix et al.)



Dilution sampling probes (continued)

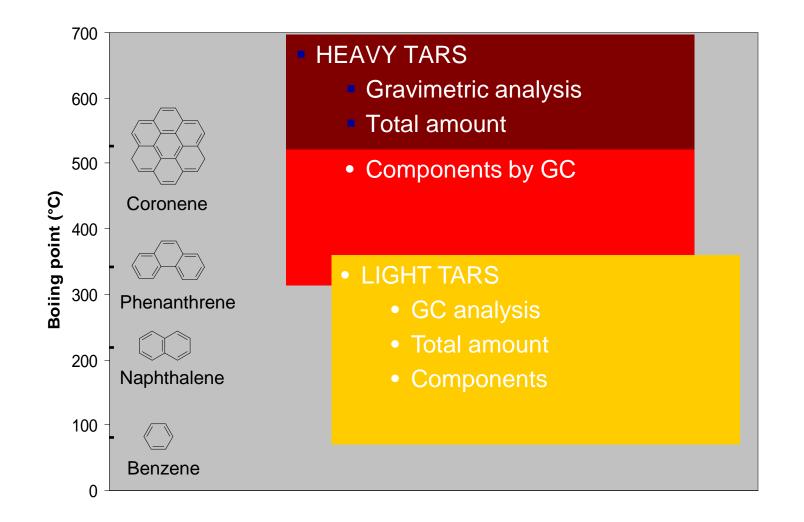
• US 7720361 (Felix et al.)

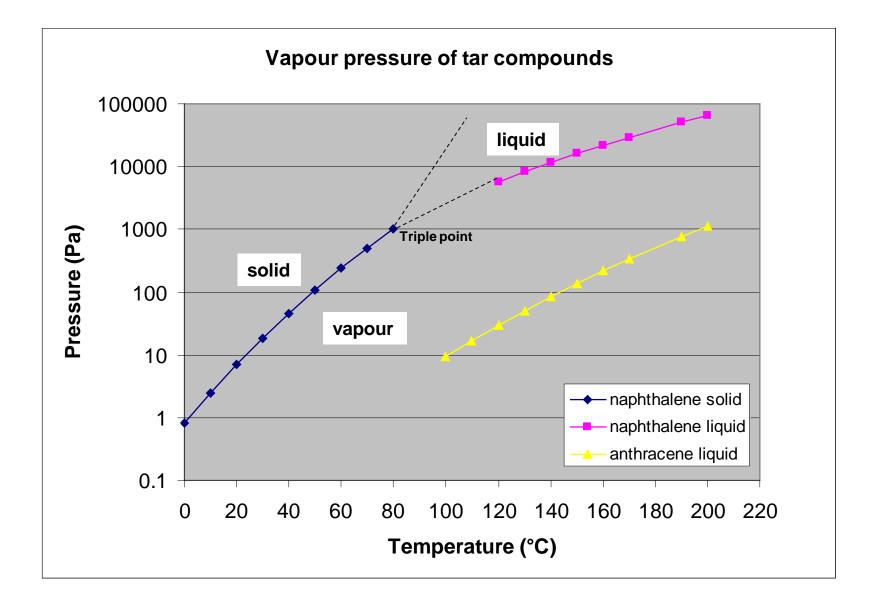
US 8302495 (Vesala, VTT)

Tar?

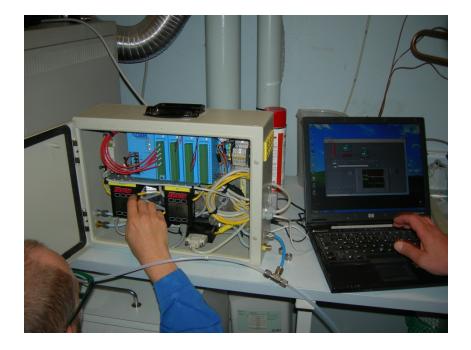
Traditionally obtained by dry distillation of wood (slow pyrolysis)

- Paint
- Multipurpose substance:

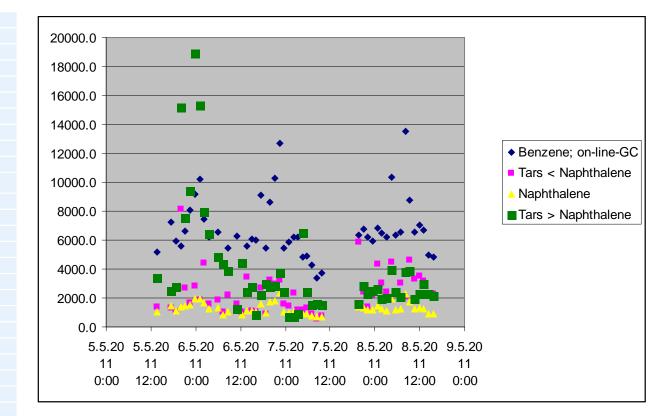

"*if sauna, vodka and tar won't help, the disease is fatal*"


Pentti Vesterinen operating a tar-burning pit in the late 19th century

Tar characterization



Dilution sampling probe with control unit



Dilution sampling: tar measurement of tarry gas

Benzene	Acenaphtylene
Pyridine	Acenaphthene
Toluene	Dibenzofurane
Ethenylbenzene	Bibenzyl
m-Xylene	Fluorene
Ethynylbenzene	Phenanthere
Styrene	Anthracene
o-Xylene	Carbazole
Benzaldehyde	1-PhenyInaphthalene
Phenol	2-Methylanthracene
Benzonitrile	4H-Cyclopenta(def)Phenantherene
4-Methylstyrene	Fluoranthene
Indene	Benz(e)acenaphthylene
o-Cresol	Pyrene
m+p-Cresol	Chrysene
Naphthalene	1,2 Benzanthracene
Quinoline	2,3 Benzanthracene
Isoquinoline	Benzo(b)fluorant
Quinatsoline	Benzo(e)pyrene
1H-Indole	Benzo(a)pyrene
2-Methylnaphthalene	Perylene
1-Methylnaphthalene	Benzo(ghi)peryle
Biphenyl	Anthanthrene
2-Ethylnaphthalene	Coronene
1.6 Dimethylnaphtalene	

Comparison of tar analyses by on-line (dilution) and of-line methods

mg/m ³ n	On-line	Off-line
Benzene	10101.1	12724.7
Toluene	689.5	689.5
m-Xylene	41.0	32.5
Styrene	128.0	144.5
o-Xylene	0.0	0.0
Phenol	38.0	40.0
Indene	395.9	374.0
Naphthalene	3792.4	3024.7
2-Methylnaphthalene	58.0	66.9
1-Methylnaphthalene	46.5	36.3
Biphenyl	86.3	68.4
1.6 Dimethylnaphtalene	0.0	2.7
Acenaphtylene	468.7	490.6
Dibenzofurane	65.0	71.5
Fluorene	174.8	174.6
Phenanthere	638.0	602.4
Anthracene	189.4	157.3
4H-cyclopental(def)Phenanthrene	79.8	52.2
Fluoranthene	501.2	252.2
Pyrene	391.0	229.6

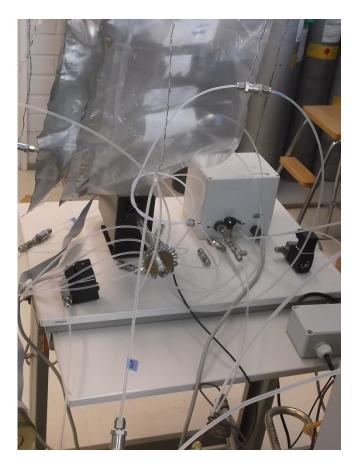
a) Laboratory gasifier

mg/m³n	On-line	Off-line
Benzene	6630,2	7380,1
Pyridine	45,1	83,8
Toluene	866,6	674,4
m-Xylene	82,4	30,8
Styrene	238,8	196,6
Phenol	927,9	702,1
4-Methylstyrene	146,5	114,5
Indene	233,9	252,7
Naphthalene	1449,9	1702,2
2-Methylnaphthalene	101,9	72,3
1-Methylnaphthalene	55,5	38,7
Biphenyl	93,5	85,5
1.6 Dimethylnaphtalene	31,6	0,0
Acenaphtylene	334,8	339,7
Acenaphthene	18,0	20,6
Dibenzofurane	163,2	175,4
Fluorene	59,9	52,9
Phenanthere	832,5	291,6
Anthracene	178,4	56,2
Fluoranthene	814,0	131,1
Pyrene	717,8	78,7
Chrysene	243,1	14,8

b) Commercial gasifier

Dilution sampling: tar and particle measurement from highly tar-laden gas

((()))


*.*х.

Other tools for gasification gas analysis in use at VTT

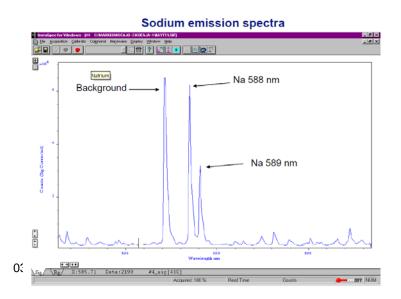
Automatization of gas sampling bag analysis

- It is easy to automate gas sampling bag analysis using multiport valves and a USBrelay box
- At VTT results are collected next morning using Excel-macros
- The same system can be used for on-line analysis of several points of the process

Pulsed Discharge Detector (PDD)

- Three detectors in one:
 - Helium Ionization (PDHID)
 - Highly sensitive universal detector
 - Photoionization (PDPID)
 - Three possible dopants (Ar, Kr, Xe)
 - Xe-PID detects compounds with IP<9.6 eV
 - Electron Capture Mode (ECD)
 - Good for halogen compounds
- At VTT first tests have been done on the analysis of:
 - CO,H₂O, CO₂, H₂S, NH₃, O₂, HCI
 - First results are promising

PDD

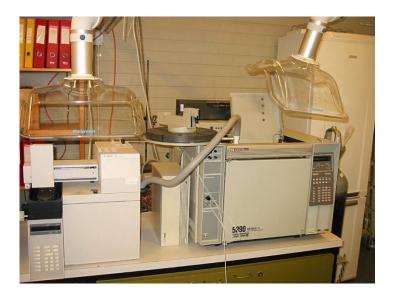


PDHID-mode

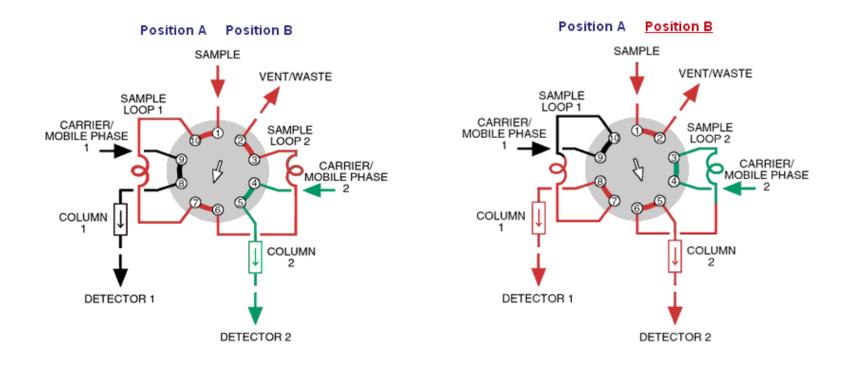
ECD-mode

Development of a cheap and robust ICP-method for the on-line metal analysis

- ICP can be used for the simultaneous analysis of several metals (Na, Fe, Ni, Cu, Zn, Sb...)
- Plasma is generated by using power transistors by ramping the frequency until resonance is achieved (VTT's patent)
- Preferably a commercial ICP could be used
- Typical bands of various metals can be detected not only from a dry gas but also from wet gas or liquid solutions
- Method was successfully tested with real gasification gas

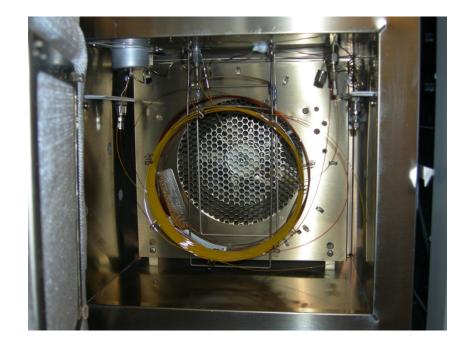


Analysis of HCN using static head space-technique (HS/GC-FID)


- 5 ml of 1:2 H₂SO₄ / water is injected to a gas tight 20 ml ampoule. The ampoule is sealed with a septum cap. 1 ml of sample (pH = 12) is injected through the septum on the H₂SO₄-solution.
- The sample ampoule is heated in the HS-apparatus at 80 °C for 5 min and then injected to GC-FID-analysis

On-line analysis of tars, water and ammonia

Simultaneous injection to two different columns:


Column 1: HP-1 for the analysis of hydrocarbons (FID)

Column 2: Poraplot-Q for the analysis of water (TCD) and ammonia (PID). TCD and PID in series.

On-line analysis of tars, water and ammonia

TECHNOLOGY FOR BUSINESS

 $\sqrt{2}$

Pilot/PDU-scale Gasification Test facilities of VTT in 2014

High-Pressure BFB gasification PDU (new test facility)

- Bubbling Fluidized-Bed gasification, fluidization by air/O₂/steam/recycle gas
- max. pressure 25 bar, thermal capacity max. 0.5 MW, gas flow rate ca. 200 m3n/h
- High-temperature filter, tar and methane reforming, gas cooling
- Slip stream or full stream testing of final gas clean-up and synthesis processes
- Continuous operation, typically 100-500 hour-long test campaigns

Intermediate Pressure CFB gasification Pilot plant (existing test rig)

- Pressure 2-6 bar, fuel capacity max. 0.5 MW, gas flow rate 200 m3n/h
- CFB-gasifier, fluidization by air/O₂/steam/recycle gas
- High-temperature filter, tar and methane reforming, gas cooling
- Slip stream or full stream testing of final gas clean-up and synthesis processes
- 1-2 week long test campaigns

Low-Pressure CFB gasification Pilot plant (present plant modified)

- Fuel capacity max. 300 kW
- Air gasification with single gasifier reactor (mainly waste gasification)
- Dual-Bed steam gasification (smaller size syngas applications 50 .. 150 MW)
- High-temperature filter, tar and methane reforming, gas cooling

Bench-scale and laboratory testing facilities

- Atmospheric-pressure BFB and CFB gasifiers with hot filtration
- Pressurized BFB gasification reactor
- Pressurized filtration and reforming test facilities (operation with slip streams or with synthetic gas)
- Catalytic conversion R&D laboratory, Fuel reactivity and ash sintering R&D laboratory

VTT's new Gasification and Pyrolysis Platforms

- VTT will move it's Gasification and Pyrolysis test facilities to an industrial area in Kivenlahti, Espoo
- New pilot plants will also be constructed
- Start-up at new site in Q4/2014
- Efficient development from laboratory to industrial realization

Horizon 2020-projects (2015-2020)

- Biofuels for transport sector, renewable chemicals
- Fuel gas & pyrolysis oil for CHP and industrial applicatio
- Waste-to-Energy with material recovery

VTT RES-Infra Investment New R&D Platform 2013-2015

Industrial projects

- Pyrolysis and gasification R&D
- Testing and piloting services
- Platform for new pilot plants

BIORUUKKI - New RESInfra Pilot Centre Location: Kiviruukki industrial area, Kivenlahti/Espoo

2G Biofuels R&D and Piloting project 7.2 M€ 2012-14, 2nd phase planned for 2015-16