PAUL SCHERRER INSTITUT

Materials Science & Technology

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Notes about particle measurements

Gas Analysis Workshop, Berlin, 04 April 2014

Mohamed Tarik, Adrian Hess, Christian Ludwig 04.04.2013

Content

Measurement concept & particle size

- Sampling from gases/aerosols
- Particle dispersion
- Measurement concepts:
 - \rightarrow Particle mobility
 - \rightarrow Counting
 - → Classification & counting
- SMPS-ICPMS (PSI & EMPA)

Ranges of particle measurement techniques

Measurement: distribution = f (particle characteristic)

(Because of missing information) For the description of particles with "irregular" form, we use:

Equivalent diameter: diameter of a sphere, which posses by the determination of certain particle characteristic the same physical properties as the measured particle 4

Sampling from gas streams (online analysis)

Systematic sampling VDI-guideline 2066

Particle dispersion (offline analysis)

Binding forces in dispersion of dry aerosol:

Surface forces

...

Adhesion forces (e.g. adsorption)

Attractive forces (e.g. van der Walls, electrostatic)

Aggregate & agglomerate formation

Dry and wet dispersion methods

11.0

(adaptiert aus Möller, Doktorarbeit, Darmstadt, 2000)

Dispersion prior (offline) measurements

Sampling and measurement concept

PAUL SCHERRER INSTITUT

Examples of particle measurement concepts

Aerodynamic Particle Sizer

Sedigraph

Kaskadenimpaktor

Zentrifuge

Examples of particle measurement concepts

Counting concept

Light scattering: scattering, diffraction, refraction, reflection, absorption, extinction Example: DLS (dynamic laser scattering) Apparatus example:

Laser aerosol spectrometer, TSI

PAUL SCHERRER INSTITUT

Condensation particle counter (CPC)

Principle: vapor condensation to grow small particles to sufficiently large size that can be optically detected

Use: size fractionation between 15 and 660 nm **Example of instrument:** CPC, Model 3787, TSI **Measured parameter:** particle number (#/cm3)

Counting concept

Aerodynamic particle sizer (APS)

Principle

Particle size distribution using light-scattering

Use

size fractionation between 0.5 and 20 um

Example of instrument

Aerodynamic particle sizer, TSI, Model 3321

Measured parameter

aerodynamic particle diameter

Classifying systems

Scanning mobility particle sizer (SMPS) = DMA + CPC

Example of instrument SMPS, Model 3936N87 (DMA + CPC), TSI

Differential mobility analyzer (DMA)

Principle

Classification of particles according to their electrical mobility (using electric field)

Use

size fractionation between 10 and 1000 nm

Example of instrument

DMA, Model 3081, TSI

"Measured parameter"

equivalent electrical mobility diameter

Classifying systems

Electrical impactor

Principle

classification in a cascade impactor and electrical detection

Use

particle size distribution and concentration

Example of instrument

Electrical low pressure impactor (ELPI) Classic, Dekati

Measured parameter

electrical charge

PAUL SCHERRER INSTITUT

SMPS-ICP-MS: Online coupling of a Scanning Mobility Particle Sizer to an Inductively Coupled Plasma Mass Spectrometer

- Online determination of size distribution and elemental composition of nanoparticles (NPs) in aerosols
- Avoiding the contamination and NPs structure alteration in conventional analysis
- Fast analysis (monitoring of transient processes)
- Potential applications: combustion processes, airborne aerosols & engineered nanoparticles
- Preliminary results: resolved SMPS-ICPMS signal from nanoparticle mixture