

University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Hostsite

Fluidized bed Steam-oxygen and air Gasification of dried Sewage Sludge at IFK

M. Schmid

University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Department of Decentralized Energy Conversion

Hostsite

at IFK University of Stuttgart

- When: ~ February 2018
- What: BFB steam oxygen and air gasification of sewage sludge
- Goals: massbalance over gasifier
 - With and without sorbens (e.g. CaO) for tar and H2S, HCI reduction in syngas
 - Variation of steam, temperature
 - Elements to be considered:
 - C,H,O
 - S, Cl, N
 - P, Fe, Ca, Hg, Zn, Cu ...

Steam-oxygen fluidized bed gasification

Advantages:

- N₂-free syngas is provided (N₂-lean with N₂ containing fuels)
- Syngas is suitable as feedstock for chemical synthesis
- Only one fluidized bed reactor is needed
- Technology is readily available from coal gasification
- O₂ enhances carbon and tar conversion
- When coupling with an water electrolysis excess O₂ can be used in gasifier

Composition of dried sewage sludge and comparison with other fuels

Wood pellets

Dried sewage sludge

	proximate analysis		elemental analysis waf					
in wt-%	moisture	ash wf	С	Н	Ο	N	S	CI
wood pellets	9.8	0.1	50.8	6.3	42.9	-	-	-
straw pellets	10.3	5.7	49.3	6.4	42.8	0.8	0.2	0.5
dried sewage sludge	6.5	47.6	51.0	6.9	32.1	7.5	2.4	0.2

Composition of Sewage Sludge Ash

Probenkennzeichnung	getrockneter Klärschlamm 4. Charge		
Hauptelemente als Oxide	a (550°)		
Kalziumoxid (CaO), %	19,5		
Eisenoxid (Fe ₂ O ₃), %	9,70		
Kaliumoxid (K ₂ O), %	1,57		
Magnesiumoxid (MgO), %	2,61		
Manganoxid (MnO ₂), %	0,259		
Natriumoxid (Na ₂ O), %	0,329		
Phosphoroxid (P2O5), %	15,9		
Schwefeltrioxid (SO ₃), %	3,98		
Siliziumoxid (SiO ₂), %	28,0		
Strontiumoxid (SrO2), %	0,097		
Titanoxid (TiO ₂), %	0,570		
Summe Oxide, %	93,8		
Kohlenstoff	a (550°)		
Gesamt (TC), %	1,50		
organisch + elementar (TOC), %	0,040		
anorganisch (TIC), %	1,46		
Kohlendioxid (CO ₂), %	5,34		

Summe TOC + CO_2 , % Summe Oxide +TOC + CO_2 , %

Probenkennzeichnung	getrockneter Klärschlamm 4. Charge		
Kurzanalyse	an (<0 25 mm)		
Kuizanaiyse			
Analysenfeuchte (N ₂ +106°C), %	4,72		
Spurenelemente	Wf		
Arsen (As), mg/kg	9,57		
Beryllium (Be), mg/kg	0,597		
Cadmium (Cd), mg/kg	1,68		
Kobalt (Co), mg/kg	2,97		
Chrom (Cr), mg/kg	377		
Kupfer (Cu), mg/kg	515		
Quecksilber (Hg), mg/kg	0,403		
Molybdän (Mo), mg/kg	7,49		
Nickel (Ni), mg/kg	25,3		
Blei (Pb), mg/kg	35,8		
Antimon (Sb), mg/kg	2,69		
Selen (Se), mg/kg	13,0		
Zinn, mg/kg	134		
Thallium (TI), mg/kg	2,67		
√anadium (V), mg/kg	30,8		
Zink (Zn), mg/kg	1010		

1

5,38

99,2

Methods – Experimental facility

bubbling fluidized bed reactor

- electrically heated
- bed diameter 0.15 m
- 3.5 m high, 10 kg bed material
- fuel input 20 kW: 3..10 kg/h
- online measurement of permanent gases (H₂, O₂, CO, CO₂, CH₄, C_xH_y)
- wet chemical measurement of tar and impurities (HCl, NH₃, H₂S)

Experimental parameters

Gasifier temperature **9** = **850°C**

- high temperature promotes tar and char coversion
- still below ash melting points

Steam to carbon ratio S/C = 1 mol/mol (for wood S/B ≈ 0,6 kg/kg)

- as less steam a possible to enhance the overall efficiency
- but sufficiant for full carbon conversion and significant tar reforming

Equivalence ratio ER (air ratio) of 0.25

- in an industrial gasifier, ER is adjusted to reach the desired gasifier temperature
- in the electrically heated experimental facility ER is set according to thermodynamical calculations for autothermal operation at adiabatic conditions
 → electrical heating was only used for heat loss compensation

Bed material: Silica sand for wood and straw, ash for sewage sludge

Methods - wet chemical impurity and tar measurement

Tar measurement arrangement

ıfk

Further explanations: Visual Presentation 2CV.3.31 D. Schweitzer, M. Schmid, A. Gredinger, R. Spörl., G. Scheffknecht: Gasification of waste biomasses: Measurement of pollutants in product gas, EUBCE 2017

DIN CEN/TS15439 (tar protocol)

- Absorption liquid: Isopropanol
- Liquid is sampled and analysed Gravimetrically (GC-MS also possible)

Methods - wet chemical impurity and tar measurement

Further explanations: Visual Presentation 2CV.3.31 D. Schweitzer, M. Schmid, A. Gredinger, R. Spörl., G. Scheffknecht: Gasification of waste biomasses: Measurement of pollutants in product gas, EUBCE 2017

- H₂S: DIN 51855-4 (iodometric titration)
- NH₃: DIN EN ISO 11732 (indophenol method)
- HCI: Coulometric analysis

	H₂S	NH ₃	HCI
Tar removal solution bottle 1	Isopropanol, H ₂ SO ₄	lsopropanol, NaOH	-
absorption solution bottle 2+3	Zinc acetate	1 mol/l H ₂ SO ₄	H ₂ O

Experimental results – dry syngas composition

Permanent gases and impurities

Bed additives for impurity reduction

Limestone (CaCO₃) is a cheap and highly available additive

- At the gasification conditions of this work, limestone is calcined to CaO
- As known from preliminary work in SEG, CaO was found active as a tar cracking catalyst
- CaO also absorbs sulfur in reductive conditions and thus performs in-situ desulfurization:

 $CaO + H_2S \rightarrow CaS + H_2O$

Equilibrium concentration of H_2S in a system of CaO, S, H_2 , H_2O , N_2

Experimental results – bed additives for impurity reduction

Experimental parameters: ER= 0.25, ϑ = 850°C, S/C=1 (approx. 30 vol-% steam)

	Inert bed	Active bed
Wood pellets, straw pellets	100 % silica sand	100 % CaO
Sewage sludge	100 % ash	25 % CaO + 75% ash

CaO additive influence on H_2S

University of Stuttgart - Institute of Combustion and Power Plant Technology - M.Sc. Max Schmid

equilibrium

Thank you!

M.Sc. Max Schmid

e-mail max.schmid@ifk.uni-stuttgart.de phone +49 711 685-63394 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany