

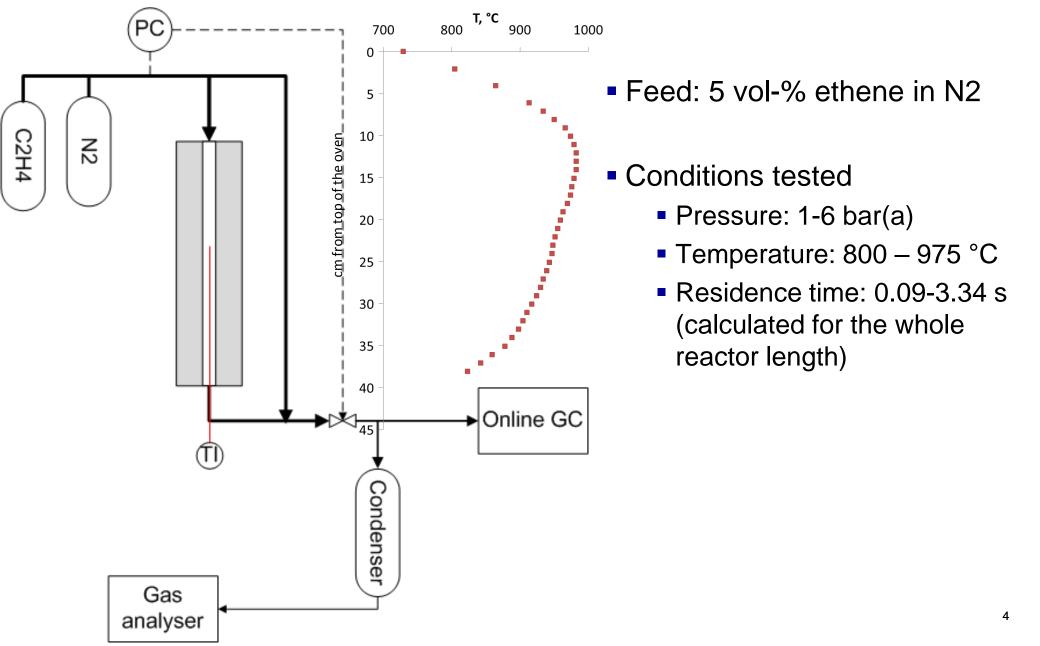
# Tar generation by ethene pyrolysis

Gas Analysis webinar, March 21<sup>st</sup> 2014

Matti Reinikainen, Noora Kaisalo, Sanna Tuomi, Pekka Simell VTT Technical Research Centre of Finland

### Background




- The objective was to generate a complex tar mixture that could be used for gas cleaning studies in lab and bench-scale.
- The concept of ethene pyrolysis in tar generation was first tested in lab-scale in varying conditions.
- The next step was to combine the production of the main gasification gas compounds and tar generation. This was carried out in HOTPURI reactor by steam reforming/partial oxidation of natural gas and simultaneous ethene pyrolysis. Natural gas, ethene, steam and oxygen were used as feed gases. The produced gas contains the main gasification gas compounds, a mixture of tars resembling real biomass gasification-based tar and also soot.
- HOTPURI reactor has been used in 2013/2014 to produce realistic gasification gas to a bench-scale hot gas filter test rig.
  - More economical solution compared to the use of cylinder gases in bench-scale testing

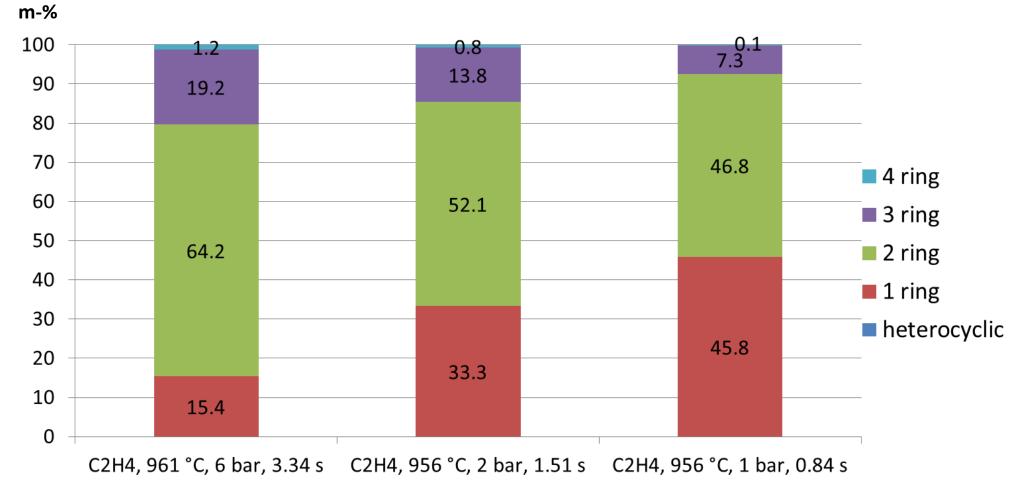


### Ethene pyrolysis experiments in lab-scale

### Laboratory set-up and conditions






#### **Example of most abundant tar compounds** C<sub>2</sub>H<sub>4</sub>, 961 °C, 6 bar, 3.34 s

| pA –      | a e                | au                     | £ \$                                         | lyn a                                                                         | 0                                                                                   | e e                                                | e e                              | Aromatic compound                        | Amount, ppm |
|-----------|--------------------|------------------------|----------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|------------------------------------------|-------------|
| -         | Benzene<br>Toluene | Styrene                | bibielean                                    | Biphenyl                                                                      | orene                                                                               | <sup>2</sup> henanthrene<br>Fluoranthene           | Pyrene                           | Benzene                                  | 2362        |
| -         | 3.852              |                        | 10.307 - 110010<br>4.8 <sup>16656</sup> 18.1 | <del>9.7</del> 47 -                                                           | 537 - Acenaphysis<br>537 - Acenaphysis<br>24.691 - Fluorene                         | Phenanthrene                                       | 5.424-                           | Naphthalene                              | 535         |
|           | 3.5                | 9                      | <u></u>                                      | 19.1<br>1.9                                                                   | 4.691                                                                               |                                                    | 35                               | Styrene                                  | 129         |
| 17 -      |                    |                        | 14.84                                        | 4                                                                             | -21.5                                                                               | mtha                                               |                                  | Acenaphthylene                           | 91          |
| -         |                    |                        |                                              | 1 007                                                                         | 21.537 - Acenaphylene<br>24.691 - Fluorene                                          | 9.196 - Antifika284fe<br>34.460                    |                                  | Indene                                   | 60          |
| 16-       |                    | benzene                |                                              | ( )                                                                           | 7                                                                                   | - 29.1                                             |                                  | Toluene                                  | 42          |
| -         |                    | 6.031 - Ethynylbenzene |                                              | ۵                                                                             |                                                                                     |                                                    |                                  | Phenantrene+Anthracene                   | 29          |
| 15        |                    | 6.031 -                |                                              | aphthalen<br>ne                                                               |                                                                                     | enanthrene                                         |                                  | Biphenyl                                 | 19          |
| 15-       |                    |                        |                                              | A- 2-Methylr                                                                  | Ð                                                                                   | 4H-Cyclopenta(def)Phenanthrene                     |                                  | Ethynylbenzene                           | 18          |
|           |                    |                        |                                              |                                                                               | 14 - Acenaphthene                                                                   | .756 -                                             |                                  | and smaller amoun<br>of many other compo |             |
| 13        | 2.006 - 2.875      | <u></u>                |                                              | -17.2862 - 1H-Indole<br>18.887<br>- 18.887<br>- 20.983.866 Ethylingphildglene | 22.394<br>24.584.270 - 2-Methyl-1-Naphthol<br>25.237 25.25125.654<br>-26.437 26.170 | 3.574 - 1-Phenyinaphthale                          | -35,228<br>-35,895,35<br>-37,100 |                                          |             |
| 11- wayer | ~                  | and the second second  | former where for the providence of the       | man un Mile Winner Myh                                                        | Hulliman Mellinger                                                                  | Here Will from the Will from from the from the the | Manh                             | 1/1/11/11/11/11/11/11/11/11/11/11/11/11  | 5           |
| <u>,</u>  | 5                  | 10                     | 15                                           | 5 20                                                                          | 25                                                                                  | 30 :                                               | 35                               | 40 45 min                                |             |



### Tar composition from ethene pyrolysis





| Benzene<br>mg/m3   | 8236 | 4194 | 1510 |
|--------------------|------|------|------|
| Total tar<br>mg/m3 | 5713 | 3126 | 828  |

### Examples of the formation of light hydrocarbons

|                | C <sub>2</sub> H <sub>4</sub> , 961 °C, 6 bar, 3.34 s | C <sub>2</sub> H <sub>4</sub> , 956 °C, 2 bar, 1.51 s | C <sub>2</sub> H <sub>4</sub> , 956 °C, 1 bar, 0.84 s |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| H2, vol-%      | 2.9                                                   | 1.4                                                   | 0.7                                                   |
| CH4, ppm       | 9769                                                  | 2449                                                  | 838                                                   |
| Ethene, ppm    | 10590                                                 | 27122                                                 | 36192                                                 |
| Acetylene, ppm | 1530                                                  | 6877                                                  | 5554                                                  |
| C3, ppm        | 77                                                    | 151                                                   | 145                                                   |
| C4, ppm        | 118                                                   | 411                                                   | 443                                                   |
| C5, ppm        | 84                                                    | 377                                                   | 329                                                   |
| C6, ppm        | 1                                                     | 6                                                     | 6                                                     |

Ethene conversion remarkable only above 950°C

- At 905 °C the conversion was 1.2% (1 bar, 0.6 s)
- At 951 °C the conversion was 16.1% (1 bar, 0.6 s)



### Generation of realistic tar-laden gasification gas in the 'HOTPURI'-reactor

# Realistic tar-laden gasification gas in HOTPURI reactor

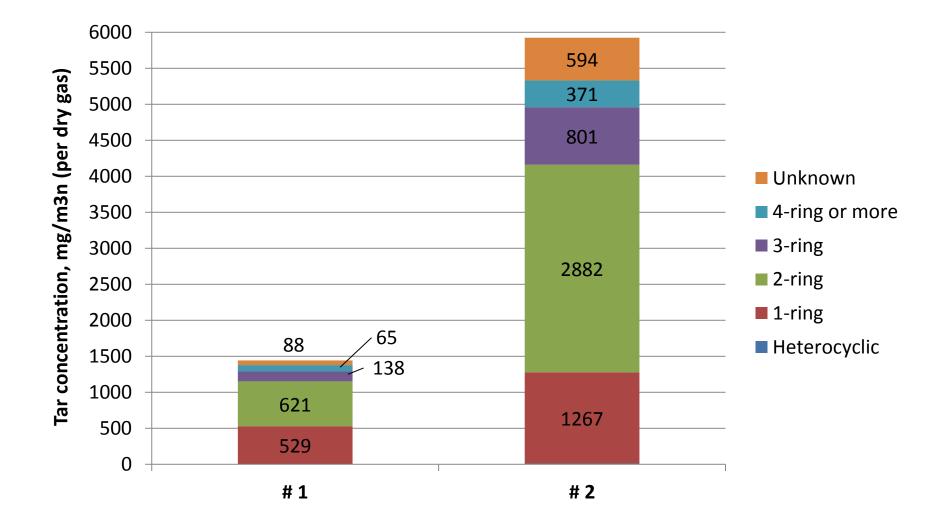
- Operation principle
  - Simultaneous production of main gasification gas components and tars from natural gas, ethene, oxygen and steam
  - Steam reforming/partial oxidation of natural gas and ethene pyrolysis
- HOTPURI reactor
  - Max. pressure 10 bar(a) and temperature 1200 °C
  - Electrically heated
  - Feed gases: natural gas, oxygen, steam and ethene
  - Gas composition measured after the reactor:
    - 1. Continuous gas analyzer for measuring CO, CO2, H2, CH4
    - 2. Gas bag samples: analyzed with GC for the main gasification gas components and C2-C5 hydrocarbons
    - 3. Tar sampling according to the Tar Protocol
    - 4. Also on-line tar measurement was used

#### **HOTPURI** reactor



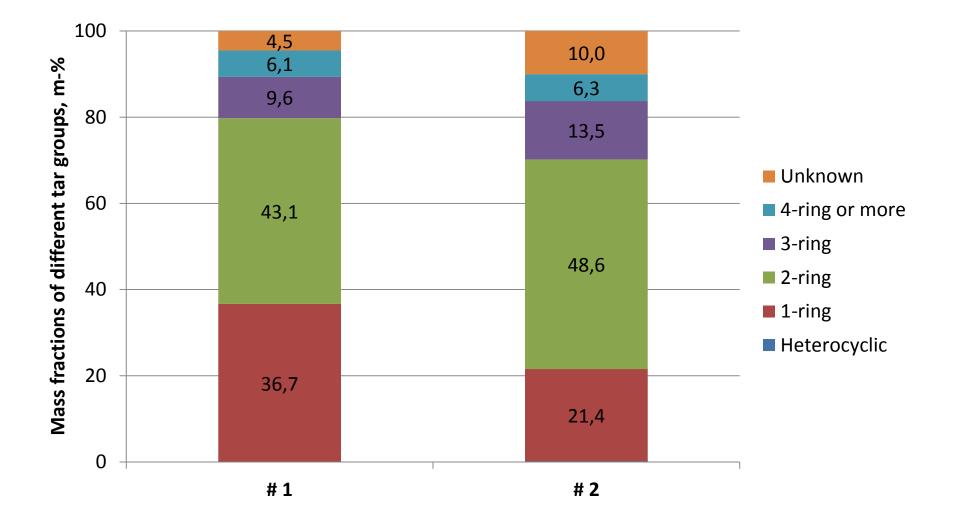





### **Examples of gas and tar composition**

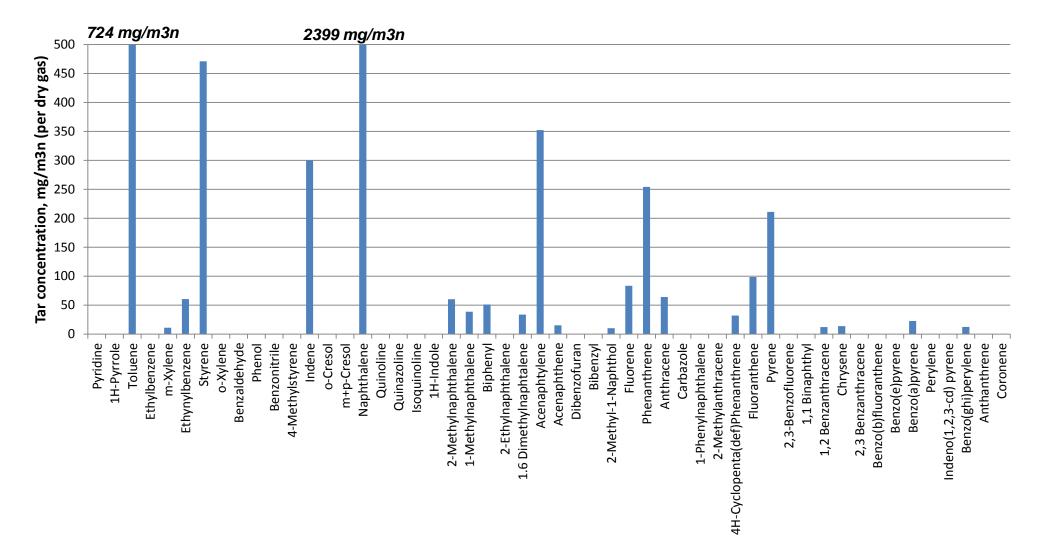


- The produced gas contained in excess of methane as the reactions conditions and feed gas ratios were not tuned for efficient conversion of natural gas. The tar yield was more important for our purposes.
- In addition to the main gas compounds, benzene and tars, also soot was formed.


| TEST                            | # 1         | # 2            |
|---------------------------------|-------------|----------------|
| Max temp in reactor, °C (appr.) | 960         | 1100           |
| Pressure                        | atmospheric | atmospheric    |
| Residence time, s               | > 3         | > 4            |
| FEED GAS COMP.                  | <b>m-%</b>  | <b>m-%</b>     |
| CH4                             | 28,9        | 24,5           |
| C2H4                            | 10,4        | 21,1           |
| O2                              | 22,7        | 18,1           |
| Н2О                             | 38,0        | 36,4           |
| PRODUCT GAS COMP.               | vol-%       | vol-%          |
| (dry basis)                     | VUI-70      | V01-76         |
| СО                              | 13,9        | 18,9           |
| CO2                             | 12,7        | 8,6            |
| H2                              | 30,8        | 44,0           |
| CH4                             | 36,7        | 24,6           |
| C2H2                            | 0,1         | 0,1            |
| C2H4                            | 5,4         | 3,6            |
| C2H6                            | 0,29        | 0,19           |
| C3-C5Hx                         | 0,09        | 0,03           |
| H2O, vol-%                      | 43,0        | 31,1           |
| Total tar, g/m3n (per dry gas)  | 1,4         | <i>5,9</i>     |
| Benzene, g/m3n (per dry gas)    | 3,7         | <b>15,0</b> 11 |

### Examples of tar (excl. benzene) composition (1)




### **Examples of tar composition (2)**





#### Examples of tar composition (3) - Tar compounds in test # 2





### Experiences and remarks on tar generation by vertice thene pyrolysis

- Efficient conversion of ethene to tars requires high temperatures, preferably temperatures above 950 °C.
- Increase in temperature, pressure and residence time increases the tar yield.
- Soot is formed as a side product in ethene pyrolysis. Soot and heavy tar compounds cause fouling and plugging of the system and analysis lines.
- Tar production by ethene pyrolysis is sensitive to changes in the reaction conditions and therefore stable conditions must be maintained in the reactor to ensure steady tar levels over time. However, this can be done. Furthermore, tar concentration should preferably be monitored by online or at least semicontinuous methods.
- No heterocyclic tar compounds were formed in lab-scale studies and their relative amount in HOTPURI tests was also low, max. 0.2 m-%.
- Gas and tar composition can be adjusted by changing the reaction conditions and feed gas ratios. However, it may be quite challenging e.g. to obtain a similar gas composition at different pressure levels.

### TECHNOLOGY FOR BUSINESS

<u>.</u>

 $\sqrt{2}$