

Webinar on "test gas generators"

CEA Grenoble

Françoise Defoort Sébastien Thiery

- **1.** Introduction
- **2.** System based on entrainment of saturated gas
- **3.** System based on syringe into vacuum vessel
- **4.** Conclusion

- Gas generators are necessary
 - For component not available in gas bottle tank (i.e. condensable gas as naphthalene, methanol...)
 - For expensive components (furfural...)
 - For on line gas analyzers calibration
- CEA needs
 - Study naphthalene and benzene kinetic decomposition in a simulated syngas
 - Study kinetics of gas release during torrefaction process
- CEA has developed two kinds of gas generators
 - 1. System based on entrainment of saturated gas
 - 2. System based on syringe into vacuum vessel

1. Introduction

2. System based on entrainment of saturated gas

- **3.** System based on syringe into vacuum vessel
- **4.** Conclusions

- Naphthalene and benzene kinetic decomposition study
 - high temperature tar craker PEGASE facility
 - with a simulated syngas from bottle gas (H₂, CO, CH₄, H₂O, C₂H₂, C₂H₄, C₂H₆..)
- For PEGASE facility we need a gas generator
 - Resistant to pressure > 1 bar
 - Able to give very high concentrations of benzene or naphthalene (dilution about 100)
 - To give continuous stable tar flow rate for several hours

Entrainment of the saturated vapor pressure by a carrier gas (nitrogen)

Development of a gas generator for "high" pressure and high concentration

DE LA DECHINENE À COMPLETION

Naphthalene

- Set up qualification
 - > Without dilution (19000 ppmV at 1.3 bar or 25000 ppmV at 1 bar)
 - By weight of condensate
 - With dilution in PEGASE facility (cold) 0 300 ppmV
 - By FTIR (calibrated with another set up based on saturated gas above naphthalene solid)

Benzene

- Set up qualification
 - > With dilution in Pegase (cold) 500 3000 ppmV
 - By $\mu GC\text{-}TCD$ with calibration bottle tank at 3000 ppmV

1. Introduction

2. System based on entrainment of saturated gas

3. System based on syringe into vacuum vessel

4. Conclusions

- For kinetics study of gas release during torrefaction process
- During torrefaction we need to follow on line by FTIR some condensable species as:

	T _{boiling} (°C)	Range of calibration (ppmV)
$C_2H_4O_2$ Acetic acid	118	100 to 3300
CH_2O_2 Formic acid	101	40 to 1000
H₂O Steam	100	0 to 8000
CH ₃ OH Methanol	65	100 to 1100
C ₂ H ₄ O Acetaldehyde	20	60 to 600
CH ₂ O Formaldehyde*	-19	100 to 2200

* 37% CH_2O + 53% H_2O + 10% CH_3OH

3- System based on syringe into vacuum vessel

- Need a gas generator
 - For pure component (gas not polluted by solvent)
 - With about 6 liters of calibrated gas

Filling the Gas Tank

3- System based on syringe into vacuum vessel

FTIR calibration

- Syringe + vacuum system validated by comparing with:
 - Other gas generator (bubbling) for steam, acetaldhehyde, methanol
 - FTIR integrated values with cold trap residue + GC-MS
- Problem with formaldehyde (adsorption on the surface of the vessel in stainless steel)

CEA has developed two kinds of gas generators

- 1. System based on saturated gas working at pressure (1.3 bar) for high concentration (naphthalene and benzene)
- 2. System based on syringe into vacuum vessel for condensable components as acetic and formic acid or acetaldehyde or formaldehyde

Thanks to these systems scientific studies could be performed

- naphthalene and benzene kinetic decomposition study in the high temperature tar craker PEGASE facility
 - presented in 17th EBCE Hambourg by S. Valin & Al
- kinetics study of gas release during torrefaction process (T. Nocquet thesis)
 - presented in 20th EBCE Milan and in 21th EBCE Copenhagen

Thank you for your attention

Contacts:

francoise.defoort@cea.fr

sebastien.thiery@cea.fr

Webinar test gas generators March 21st, 2014

Summary

- 1. System based on saturated gas working at pressure (1.3 bar) for high concentration (naphthalene and benzene)
 - **1.** Build for simulating a real gas under repeatable conditions
 - System chosen because it allows high concentration, high pressure and long duration stable test reached in few minutes
 - Checked for accuracy by on line measurements (FTIR or µGC-TCD)
 - > Pure component are chosen because solvent are not present in the real syngas
 - > Can be used with any other component that is preferably liquid
 - 100°C is a maximum temperature to be comfortable with cold point
 - Naphthalene is the worst case for cold point
 - Check compatibility between the material of the vessel and the compound to be analyzed
- 2. System based on syringe into vacuum vessel for condensable components
 - 1. Build for calibration on line analyzer (FTIR)
 - System chosen because a small quantity of gas is necessary (~ 6 liters), reproducible, accurate (syringe)
 - > Checked for accuracy by other gas generator (example saturated gas)
 - > Pure component are chosen because:
 - Solvent disturbs FTIR signal
 - Mixture of components are possible (as formaldehyde + H₂O + methanol)
 - Can be used with any other component that is preferably liquid
 - Check the saturation vapour pressure
 - Check compatibility between the material of the vessel and the compound to be analyzed

